Single-Pass Generation of Static
Single-Assignment Form for
Structured Languages

MARC M. BRANDIS and HANSPETER MOSSENBOCK
ETH Zirich, Institut fir Computersysteme

Over the last few years, static single-assignment (SSA) form has been established as a suitable
intermediate program representation that allows new powerful optimizations and simplifies
others considerably. Algorithms are known that generate SSA form from programs with an
arbitrary flow of control. These algorithms need several passes. We show that it is possible to
generate SSA form in a single pass (even during parsing) if the program contains only structured
control flow (i.e., no gotos) For such programs the dominator tree can be built on the fly, too.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—control structures; D.3.4 [Programming Languages]: Processors—code genera-
tion; compilers; optimization; E.1 [Data Structures]: Trees

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Dominator tree, static single-assignment form, structured
languages

1. INTRODUCTION

Over the last few years, static single-assignment (SSA) form [Cytron et al.
1991] has been established as a suitable intermediate program representa-
tion that allows new powerful optimizations and simplifies others consider-
ably. The essential property of SSA form is that there is only one assignment
to each variable in the whole program text. This makes it easy to reason
about variables: if two variables have the same name they also contain the
same value.

This research was supported in part by the Swiss National Science Foundation (Schweizerischer
Nationalfonds zur Forderung der wissenschaftlichen Forschung) under grant 21-33459.92 and 1n
part by ETH Zurich.

Authors’ addresses: M. M. Brandis, ETH Zurich, Institut fur Computersysteme, CH-8092 Zurich,
Switzerland, H Mossenbdck, University of Linz, Institute for Computer Science, A-4040 Linz,
Austria

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice 1s given that copying 1s by permission of the
Association for Computing Machinery To copy otherwise, or to republish, requires a fee and/or
specific permission.

© 1994 ACM 0164-0925,/94 /1100-1684 $03.50

ACM Transactions on Programming Languages and Systems, Vol 16, No 6, November 1994, Pages 1684-1698



Static Single-Assignment Form . 1685

vi=0; vy i=0;
X=V+1; Xj:==vy+1;
vVi=2; Vo 1= 2;
yi=v+3 Yii=Vo+3

Fig. 1. Assignment sequence in original form and in SSA form.

1.1 Informal Explanation of SSA Form

We first explain the construction of SSA form informally before we turn to
the description of our algorithm. Let us start with a simple sequence of
assignments. To obtain its SSA form, we transform it so that in every
assignment the variable on the left-hand side is given a unique name, and all
uses of this variable are renamed accordingly (Figure 1). We use subscripts to
make variable names unique and call the subscripted variables value in-
stances of the original variables, or values for short.

More complicated programs contain branches and join nodes. At join
nodes, multiple values of a variable may reach the node via different branches.
These values have to be merged into one single value that reaches further
uses of this variable and for which there is again one single assignment (see
Figure 2). For this purpose, assignments are generated with so-called ¢-func-
tions on the right-hand side. ¢-functions have as many operands as there are
branches into the join node. Thus the ¢-function in Figure 2 has two
operands. The meaning of a ¢-function is: if control reaches the join node via
the ith branch, the value of the function is its ith operand.

Figure 3 shows the control flow graphs [Aho et al. 1986] for an IF
statement and a WHILE statement with instructions in SSA form. The nodes
of the graphs are basic blocks, i.e., instruction sequences with a single entry
and no branch instruction, except possibly at the end of the sequence. The
single-assignment property simplifies reasoning about variables, since for
every value instance its (single) defining assignment is known. Because every
assignment creates a new value name it cannot %ill (i.e., invalidate) expres-
sions previously computed from other values. In particular, if two expressions
are textually the same, they are sure to evaluate the same result.

Efficient and powerful optimization algorithms based on SSA form have
been described for constant propagation [Wegman and Zadek 1991], common-
subexpression elimination [Birtwistle et al. 1979], partial redundancy elimi-
nation [Rosen et al. 1988], code motion [Cytron et al. 1986], and induction
variable analysis [Wolfe 1992]. The single-assignment property is also helpful
in instruction scheduling since it leaves only the essential data dependences
in the code and avoids output- and antidependences [Nicolau et al. 1991]. SSA
form has also been adapted for table-driven code generation [McConnell and
Johnson 1992].

1.2 Algorithms for Generating SSA Form

Cytron et al. [1986] have presented an efficient algorithm for generating SSA
form from the instructions of an arbitrary control flow graph and its domina-
tor tree [Aho et al. 1986]. Their algorithm computes the dominance frontiers

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 6, November 1994.



1686 . M. M. Brandis and H. Mossenb&ck

Vl;:,,, V2.—...
Fig. 2. Values v, and vy, have to be merged into a unique \ /

value v;

Vy = ¢ (Vla V2)

IF cond THEN 1:=0
vi=1 WHILE cond DO
ELSE 1i=1+1
vi=2 END,
END; x =i
Xi=v+1

vyi= 0 (vy.v,)

xl':v3+l i ;=i3+J

Fig 3. Control flow graphs of an IF and a WHILE statement with instructions in SSA form.

in the graph, which are the nodes where ¢-functions have to be placed. This
is the most efficient algorithm currently known for a general flow graph, but
it requires several passes over the instructions of the graph.

Structured control flow graphs simplify the generation of SSA form. Al-
though this seems to be a kind of “folklore” knowledge, it has not been
published in detail to the best of our knowledge. Rosen et al. [1988] sketch a
single-pass algorithm for generating SSA form, but their algorithm requires a
topologically sorted control flow graph and generates many unnecessary
¢-assignments. A similar idea was exploited by Horwitz et al. [1989] in the
construction of dependence graphs.

In a recent paper, Johnson and Pingali {1993] describe a method for
computing the dependence flow graph of a program and deriving SSA form
from it. They identify single-entry/single-exit regions to place merge nodes,
which are similar to ¢-assignments. Although their method is similar to ours
in that it makes use of structured control flow, it is inherently multipass.

In this paper we present a technique for generating SSA form in a single
pass directly from the source text of a program. It can be applied to struc-
tured programs, i.e., to programs that contain assignments and structured

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 6, November 1994



Static Single-Assignment Form . 1687

statements (such as IF, CASE, WHILE, REPEAT, or FOR) but no goto
statements. For such programs the join nodes, and thus the places where to
insert ¢-assignments, are immediately known so that ¢-assignments can be
generated on-the-fly during parsing. This is useful for languages such as
Simula [Birtwistle et al. 1979], Modula-2 [Wirth 1982], or Oberon [Wirth and
Reiser 1992], which lack goto statements. If language independence is de-
sired, our algorithm can also be applied to control flow graphs instead of
source programs.

The advantage of generating SSA form directly during parsing is that it
saves an intermediate step. Instead of building a high-level representation of
a program and then transforming it, we directly generate machine-specific
instructions in SSA form ready for optimizations. This saves time and mem-
ory. However, the same technique could be used for generating a machine-in-
dependent representation as well.

We do not deal here with alias problems caused by assignments to array
elements, to parameters passed by reference, and to variables that are
referenced via pointers. These problems can be dealt within the same way as
described by Cytron et al. [1991].

While Cytron’s method requires the construction of the dominator tree—it-
self a nontrivial step—our method does not need such a data structure.
However, the dominator tree is useful in subsequent optimizations so that it
is worth showing that for structured programs it can be built in a single pass
during parsing, too.

Section 2 of this paper explains our algorithm for generating SSA form,
while Section 3 shows how to build the dominator tree during parsing.
Section 4 demonstrates how to extend our method to certain unstructured
language features. Section 5 estimates the time bounds of our algorithm.
Section 6 shows measurements, and Section 7 draws some conclusions.

2. COMPUTING STATIC SINGLE-ASSIGNMENT FORM

2.1 Naming of Values

Every assignment to a variable v generates a new value v, where i is a
unique number for this variable. After the assignment, v, is the current value
of v. Every subsequent use of v is replaced by a use of its current value (see
Figure 4). The current value of a variable can be stored in its symbol table
entry.

2.2 Join Nodes

Control structures such as IF and WHILE statements introduce branches
into the flow graph of a procedure. A node where two branches join is called a
Jjoin node. For all structured statements, the corresponding join nodes are
known in advance (see Figure 5). To the flow graph of every procedure we add
a virtual start node Enter and a virtual end node Exit. We introduce an
empty branch from Enter to Exit in order to make Exit a join node. Control

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 6, November 1994,



1688 . M M. Brandis and H. Mossenbock

Assignments | Assignments Current values
(original form) (SSA form) v x
Vo X0
v:=0; vy =0 Vi Xg
Xx=v+1; X =vyp+ L v oXy
vi=2 Vo =2 Voo Xy

Fig 4. Current values of v and x during the compilation of an assignment sequence.

IF, CASE WHILE, FOR REPEAT procedure
Enter
L]
join node Exit

Fig. 5. Control structures and their join nodes in the flow graph.

structures may be nested. The join node of the innermost control structure
currently being compiled is called the current join node.

Note that we do not introduce special nodes for joins but reuse the nodes
which appear naturally at the points where branches are merged. For exam-
ple, the join node of an IF statement will also contain the statements
following the IF. The only case where we introduce additional join nodes is
when REPEAT statements are nested (Figure 6). This is necessary for later
optimizations. For example, if the join nodes of the two loops were merged
one could not move loop-invariant calculations out of the innermost loop.

2.3 Where to Place ¢-Assignments

Every assignment belongs to a certain branch of the enclosing control struc-
ture. It introduces a new value, and when this value reaches the next join
node it will be different from the value(s) of the same variable that reach the
join node via other branches. Therefore, every assignment to a variable v
adds or modifies a ¢-assignment for v in the current join node. The ¢-oper-
and corresponding to the branch that contains the assignment is replaced by
the current value of v (see Figure 7). Note that ¢-assignments, like all
assignments, generate new values and therefore cause the placement of other
¢-assignments in the next outer join node (with the exception of ¢-assign-
ments in the Exit node for which there is no join node).

ACM Transactions on Programming Languages and Systems, Vol 16, No 6. November 1994



Static Single-Assignment Form . 1689

additional
REPEAT join node
REPEAT instead of
stats
UNTIL el
UNTIL €0

Fig. 6. Additional join nodes may be inserted for nested REPEAT statements.

vy =1

1 V3 =2

V= 00 )

Fig. 7. Insertion (modification) of a ¢-assignment when compiling assignments.

2.4 Compiling IF Statements

When we start parsing an IF statement we create a new join node immedi-
ately which will later be linked to the control flow graph. This join node
becomes the container of all ¢-functions generated due to assignments in
both branches of the IF statement.

An assignment to a variable v in the THEN part will create a new current
value v,, which is different from the current value v, at the beginning of the
ELSE part (see Figure 8). Therefore, the old current value v, has to be
remembered as a backup value and has to be restored before the ELSE part
1s parsed. We conveniently store the backup value of v in the ¢-function
created by the first assignment to v in a statement sequence. At the end of
the statement sequence we traverse the ¢-functions in the current join node
and reset the current values to the stored backup values. Thus every state-
ment sequence leaves the current values unchanged. Figure 9 shows various
snapshots of the control flow graph during the translation of an IF statement.
After snapshot 3 the current value of a is reset to a,, and the current value of
b is reset to b,. Note that there is no assignment to 6 in the ELSE branch
and no assignment to ¢ in the THEN branch. The corresponding operands in
the ¢-functions for b and ¢ are therefore the current values of b and ¢ at the
beginning of the branches, namely, b, and ¢, (the backup values).

When the whole IF statement has been parsed, the generated ¢-assign-
ments are committed, i.e., they are processed as assignments. This causes the
placement of other ¢-assignments in the join node of the enclosing control
structure, and the values on the left-hand sides of the ¢-assignments
(aqy, by, c;) become the new current values for a, b, and c.

ACM Transactions on Programming Languages and Systems, Vol 16, No 6, November 1994



1690 . M M. Brandis and H Mo&ssenbdck

Fig. 8. Current values of v in both
branches of an IF statement. v, is stored as I o |
a backup value in the ¢-function of the join ! —
node. Vo e .

“-

o
et]
(]
=
=

ksl
<
=X
=
(o

© @ ©) (?
C

O]

a = 1;
bl :=a1+1

] [s=0@)  [a] 3; = $ ((111)) 28

Jjown node Join node

join node

®

3y, by
a; =1, a3,=a0+1 a; =1, az:=2a; +1;

by .=a; +1 b,=a; +1]|] ¢y:=2
a:=6¢ ;) |ag a,=0(a,3) |ag
by =0 (b, by) |by by=0 (b;,by) | by
Join node cp= ¢ (cp, 1) | Co

Join node

Fig. 9. Generation of SSA form for an IF statement.

2.5 Complling WHILE Statements

The join node of a WHILE statement is the header node [Aho et al. 1986] of
the loop, 1.e., the node where the entry to the loop and the backward branch
join. All assignments in the loop cause the placement of ¢-functions in this
join node in the same way as it is done for IF statements.

ACM Transactions on Programmung Languages and Systems, Vol. 16, No 6, November 1994



Static Single-Assignment Form . 1691

When a ¢-function is inserted in the join node of a WHILE statement, this
leads to a new current value for a variable that might have already been used
in the loop. All uses of this variable must thus be replaced by the new current
value. For every value we keep a list of instructions where this value is used
(a use chain). By traversing the use chain of a value through all instructions
whose address is larger than the address of the loop header, it is easy to
replace all occurrences of the value in the loop. Figure 10 shows some
snapshots of the control flow graph during the translation of a WHILE
statement. When the whole WHILE statement has been parsed, the ¢-assign-
ments in its join node are committed. This causes the placement of new
¢-functions in the next outer join node and makes b, and a, the new current
values of b and « for the instructions following the WHILE statement. (Note:
if the language allows the condition in the WHILE header to contain assign-
ments, the values created by these assignment have to be taken as the
current values after the WHILE statement.)

The compilation of CASE statements and FOR statements follows the same
lines as the compilation of IF statements and WHILE statements.

2.6 Compiling REPEAT Statements

REPEAT statements are special because control does not leave them via their
join node. The join node is the loop header, and all assignments in the
REPEAT statement cause the placement of ¢-functions in it (as for WHILE
statements). However, when these ¢-assignments are committed after the
REPEAT statement, the second operand of every ¢-function (the one corre-
sponding to the backward branch of the loop) is taken as the new current
value after the REPEAT statement. This is also the value that becomes an
operand in the ¢-function of the next outer join node (see Figure 11).

2.7 Implementation

SSA form can be generated using a procedure InsertPhi to generate or modify
a ¢-assignment and a procedure CommitPhi to commit the ¢-assignments of
a join node.

Whenever an assignment “v,:= ...” is encountered in the ith branch
leading to join node b, InsertPhi(b,i,v,,v,,,;) is called, where v,,; is the
value of v before the assignment. This value is stored as the backup value in
the ¢-assignment (denoted as “v, = ¢(...)/v,,,”).

»

PROCEDURE InsertPhi (b: Node; i: INTEGER,; v,, v,,4: Value);

BEGIN
IF b contains no ¢-assignment for v THEN
Insert “v; == Vo, - -, Vorg) [ iy in b

IF b is a join node of a loop THEN
Rename all mentions of v,y in the loop to v,
END
END;
Replace ith operand of v’s ¢-assignment by v,
END InsertPhi;

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 6, November 1994.



1692 . M. M. Brandis and H. Mdssenbdck

@ (TD ©)
a:=1; WHILEcond DO b:=a+1; a:=a*2 END
) @ ©)
a =1 a; =1 a =1
Jjoin node Jjoin node Jjoin node
cond b= 0 (b, by) by = by, by) |
-~ cond az'= ¢(a;, a)
-— cond
!
byi=az+1
a,:=a;%2

I

Fig. 10. Generation of SSA form for a WHILE statement. Note that a, has been replaced by a,

in @

join node
REPEAT vy =0 (vo,vl)
vi=...
UNTIL cond

U

next outer join node

Fig. 11.  Generation of SSA form for a REPEAT statement v, is the current value of v after the
REPEAT statement.

Whenever a join node b contained in the ith branch of its outer join node B is
committed, CommitPhi(b) is called.

PROCEDURE CommitPhi (b: Node);
BEGIN
FOR all ¢-instructions “v, == ¢{vy,...,v,) /v,y in b DO
IF b is a join node of a repeat THEN val = v, ELSE val == v, END,
Make val the current value of v;
InsertPhi(B, 1, val, V)
END
END CommitPhi:

ACM Transactions on Programming Languages and Systems, Vol 16, No 6, November 1994



Static Single-Assignment Form . 1693

IF, CASE WHILE, FOR REPEAT

Control
flow
graphs

Dominator
trees

ek

Fig. 12. Structured control flow graphs and their dominator trees.

3. COMPUTING THE DOMINATOR TREE

Our method for generating SSA form does not need the dominator tree.
However, many optimization algorithms require this data structure, and we
will show another use in Section 4. Therefore, we show that for structured
programs the dominator tree can again be built on-the-fly during parsing.

The dominator tree is based on the dominance relation [Aho et al. 1986]
between basic blocks: a block X is said to dominate a block Y if X appears on
every path from the start node of the flow graph to Y. X is called a
dominator of Y. If X is the closest dominator of Y on any path from the start
node to Y then X is called the immediate dominator of Y. A dominator tree
is a tree in which the father of every block is its immediate dominator.

An efficient algorithm to construct the dominator tree for arbitrary flow
graphs has been described in Lengauer and Tarjan [1979], but it requires
several passes over the graph. For structured programs we can use a much
simpler technique that allows us to build the dominator tree in a single pass
during parsing.

Structured statements such as IF, WHILE, FOR, REPEAT, and CASE
statements are subgraphs with a single entry node and a single exit node.
The entry node dominates all nodes inside the statement, and the immediate
dominator of inner nodes is defined as shown in Figure 12. Thus we can set
the immediate dominator of every node immediately when we create the
node.

4. EXTENDING OUR METHOD TO UNSTRUCTURED STATEMENTS

For structured statements we have shown how to generate both SSA form
and the dominator tree in a single pass during parsing. In the following

ACM Transactions on Programming Languages and Systems, Vol 16, No 6, November 1994,



1694 . M. M. Brandis and H. Mdssenbtck

section we will show that it is even possible to extend our method to a certain
class of unstructured statements (LOOP/EXIT and RETURN) that may
cause exits from control structures at arbitrary points. However, since such
exits are a kind of (disciplined) goto, it is not surprising that they are much
harder to handle than structured statements.

We do not elaborate on the processing of unstructured statements here but
simply want to show that such statements can be handled in a single pass,
too.

4.1 Compiling LOOP and EXIT Statements

A LOOP statement (see, for example, Wirth and Reiser [1992]) is an endless
loop that can be left at various points by an EXIT statement. It introduces
two join nodes: one is the loop header where the entry to the loop and the
backward branch join; the other is the node following the LOOP statement
which is the target of all exit branches (see Figure 13). All ¢-functions
generated due to assignments directly in the loop are collected in the join
node at the loop header. However, after the LOOP statement the ¢-assign-
ments in the loop header are not committed, since these are not the assign-
ments that determine the new current values after the LOOP statement.
Rather, the dominator tree is traversed from every node containing an EXIT
statement to the loop header, and all assignments on this path cause the
placement of ¢-functions in the join node after the LOOP statement. These
¢-assignments are finally committed. Every EXIT statement removes an
incoming branch from its current join node. Therefore the ¢-operands corre-
sponding to this branch must be removed. ¢-functions that end up having no
operands at all are deleted.

For programs containing EXIT statements the construction of the domina-
tor tree becomes more complicated, too. An EXIT statement removes a branch
from the current join node, thus possibly changing the immediate dominator
of this node. Consider Figure 14. The dominator tree of the control flow graph
(a) is shown in (b). However, when node 4 contains an EXIT statement, the
dominator tree changes to (¢). When both node 3 and node 4 contain an EXIT
statement, node 5 is not reachable any more and the dominator tree changes
to (d).

When building the dominator tree, one simply has to remember whether or
not the statement sequence of a branch contains an EXIT statement directly.
In this case, the branch is said to be dead. The immediate dominator of a join
node has to be computed as the closest common dominator on all incoming
branches that are not dead. In order to find the closest common dominator of
two nodes X and Y, we traverse the dominator tree upward from X and Y
and take the first node that is on both paths.

Let us look at Figure 14 again. If node 4 in Figure 14(a) contains an EXIT
statement, the second branch leading into node 5 is dead; therefore, the
immediate dominator of 5 is 3 (Figure 14(c)). If both 3 and 4 contain an EXIT
statement, all branches leading into 5 are dead, and thus 5 does not have a
dominator at all. Furthermore, the first branch leading into 9 is dead;

ACM Transactions on Programming Languages and Systems, Vol 16, No. 6, November 1994



Static Single-Assignment Form . 1695

LOOP
IF cond0 THEN EXIT END;
IF cond! THEN EXIT END;

END;

- Join node

(2 (b) Fig. 14. (a) A control flow graph, (b)
its dominator tree without EXITs, (c)
with an EXIT in node 4, (d) and with
EXITs in nodes 3 and 4.

[6]
(7] (8109]
© (d)

therefore, the immediate dominator of 9 is the closest common dominator of 7
and 8 (the predecessors on the branches that are still alive), which is 6
(Figure 14(d)).

For the node following a LOOP statement, the immediate dominator is also
computed as the closest common dominator of all incoming branches, i.e., of
all nodes containing an EXIT statement that leads to this target node.

4.2 Compiling RETURN Statements

RETURN statements (used to terminate a procedure and to return control to
its caller) can be handled in the same way as EXIT statements. A RETURN
statement makes a branch dead and thus removes it from the current join
node. As for EXIT statements, the corresponding operands of all ¢-functions
in this join node have to be removed. The immediate dominator of the join

ACM Transactions on Programming Languages and Systems, Vol 16, No 6, November 1994



1696 . M. M. Brandis and H. Mdssenbdck

node has to be computed as the closest common dominator of all live branches
into this join node.

5. ANALYSIS

Cytron et al. [1991] report that the run-time complexity of their algorithm is
O(r?) in the worst case, where r is the maximum of either the number of
nodes in the control flow graph, the number of edges in this graph, the
number of original assignments, or the number of original mentions of a
variable in the program. We found that our algorithm has the same worst-case
complexity. This is not surprising since the size of the SSA form, i.e., the
number of ¢-assignments and the number of their operands, is independent
of the algorithm used for its generation. In practice, however, the translation
to SSA form is O(r) for both algorithms. We found that every original
assignment generates 1.2 ¢-assignments on the average. These measure-
ments are in correspondence with the numbers reported by Cytron et al.
[1991].

The running time of our algorithm is determined by the effort to generate
the ¢-assignments and to rename the mentions of variables in a loop after
¢-assignments for these variables have been inserted into the loop header
(see Section 2.5). Every original assignment generates at most one ¢-assign-
ment in every join node. If a is the number of original assignments and b the
number of join nodes (one for every statement like IF, WHILE, etc.), the
number of ¢-assignment is O(ab). The mentions that have to be renamed in a
loop are at most the original mentions in the loop (m) plus the mentions in
¢-assignments contained in the loop ( p). Since a ¢-assignment has at most n
mentions (if n is the maximum number of branches leading into a join node),
p 1s O(abn). The total running time is therefore O(ab) + O(m) + O(abn). If r
is the maximum of a, b, m and n, then the running time is O(r?) in the
worst case.

Although our algorithm has the same worst-case behavior as the one
described by Cytron et al. [1991], it generates SSA form in a single pass,
while their algorithm needs three passes plus additional effort to build the
dominator tree. Our algorithm looks at every assignment exactly once, imme-
diately generating a ¢-operand in the right join node. Furthermore, we
usually choose the appropriate name for every mention of a variable immedi-
ately when generating the instructions, while the algorithm in Cytron et al.
[1991] needs a separate pass to rename all mentions after the ¢-assignments
have been placed. This makes us believe that our algorithm runs faster and is
simpler to implement. However, this still needs to be shown by empirical data
and is a topic of future research.

6. MEASUREMENTS

We implemented our algorithm in a compiler for a subset of Oberon (with
expressions, assignments, IF, WHILE, REPEAT, and LOOP/EXIT state-
ments, as well as scalar variables and arrays). The generation of SSA form

ACM Transactions on Programming Languages and Systems, Vol 16, No 6, November 1994



Static Single-Assignment Form . 1697

Table I
Generated instructions Compilation time (in ms)
Statements I, 1 % Ty T o
Sieve 17 48 42 13 33 30 9
Heapsort 46 162 138 15 90 83 8
Polyphase sort 104 514 426 17 243 220 9

and the construction of the dominator tree made up 250 lines of source code,
which accounted for 15% of the compiler’s total source code.

Table I shows some data from the compilation of three benchmark pro-
grams: Sieve (calculating prime numbers), Heapsort, and Polyphase sort. We
measured the total number of generated instructions including ¢-assign-
ments (I,) and the number of generated instructions without ¢-assignments
(I). Furthermore, we measured the time to generate the instructions from the
source code with generation of ¢-assignments (T,) and without generation of
¢-assignments (T). The measurements were performed on a NS32532 proces-
sor running at 25 MHz. The results show that our algorithm imposes a linear
time penalty of about 10% and an almost linear space overhead of about 15%
to a compilation in practice.

7. CONCLUSIONS

Static single-assignment form and the dominator tree are important data
structures in optimizing compilers, but they are difficult to generate for
programs with an arbitrary flow of control. For structured programs without
goto statements, it is possible to build both SSA form and the dominator tree
in a single pass directly during parsing. We have shown a straightforward
technique for that.

It is remarkable how much the omission of the goto statement simplifies
the algorithms to generate SSA form. It demonstrates how a poor language
feature may cause undue overhead in a compiler. We regard it as an impor-
tant result that the restriction of a language to a few simple control struc-
tures also leads to a simpler and more efficient optimizing compiler.

Our algorithms do not only allow building small and efficient compilers,
but they are also easy to understand. It was possible to teach them in
undergraduate course within a few weeks (2 hours per week) while the
students built a full optimizing compiler for a small language based on SSA
form. Given the ease with which the powerful and elegant SSA form can be
generated for structured languages, we do not see any reason why compilers
for such languages should build any other intermediate program representa-
tion, such as an abstract syntax tree.

We implemented our algorithms in a compiler for a subset of Oberon. Both
the generation of SSA form and the construction of the dominator tree could
be implemented with less than 250 lines of code. We are currently working to
integrate our technique in a full Oberon compiler.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 6, November 1994.



1698 . M. M. Brandis and H. Méssenbéck

ACKNOWLEDGMENTS

We would like to thank Robert Griesemer and Josef Templ for their valuable
comments on earlier versions of this paper, as well as the anonymous referees
for their many helpful suggestions.

REFERENCES

Ano, A. V., SETHL, R., sAND ULLMAN, J. D.  1986. Compilers. Addison-Wesley, Reading, Mass.

ALPERN, B.. WEGMAN, M. N., AND ZADECK, F. K. 1988 Detecting equality of varables in
programs. In ACM Symposium on Principles of Programming Languages. ACM, New York,
1-11

BrRTwisTLE, G. M., DAHL, O.-J., MYHRHAUG, B., AND NYGAARD, K. 1979  Simula Begin. Stu-
denthtteratur, Lund, Sweden.

CvyTrON, R., FERRANTE, J , RosEN, B K., WEGMAN, M. N., aND ZADECK, F. K. 1991. Effiaently
computing static single assignment form and the control dependence graph. ACM Trans.
Program. Lang. Syst. 13, 4, 451-490.

CyTrON, R., LOWRY, A, AND ZADECK, F. K. 1986 Code motion of control structures in high-level
languages. In ACM Symposium on Principles of Programmung Languages ACM, New York,
70-85.

LENGAUER, T. AND TARJAN, R. E. 1979 A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program Lang. Syst. 1, 1, 121-141.

McConNELL, C. AND JOHNSON, R. E. 1992. Using static single assignment form 1 a code
optimizer. ACM Lett. Program. Lang Syst. 1, 2, 152~160.

Horwirz, S., Prins, J., aND REPs, T. 1989 Integrating noninterfering versions of programs.
ACM Trans. Program. Lang. Syst. 11, 3, 345-387.

JOHNSON, R. AND PINGALL K. 1993. Dependence-based program analysis. In Proceedings of the
SIGPLAN93 Symposium on Programmuing Languages Design and Implementation. ACM, New
York, 78-89.

Nicorau, A., Porasman, R, aND Wanc, H. 1991, Register allocation, renaming, and their
impact on fine-grain parallelism. In Proceedings of the 4th International Workshop on Lan-
guages and Compilers for Parallel Computing. Lecture Notes in Computer Science, vol 589
Springer-Verlag, Berlin, 218-235,

Rosen, B. K., WeaMAN, M. N., AND ZADECK, F. K. 1988 Global value numbers and redundant
computations. In ACM Symposium on Principles of Programmung Languages. ACM, New
York, 12-27

WEGMAN, M. N. aND ZADECK, F. K. 1991. Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst 13. 2, 181-210.

WirtH, N.  1982. Programming in Modula-2. Springer-Verlag, Berlin.

WirTH, N. aAND REISER, M 1992. Programming in Oberon, Steps beyond Pascal and Modula-2.
Addison-Wesley, Reading, Mass.

WoLFE, M. 1992. Beyond induction variables. In Proceedings of the SIGPLAN'92 Symposium
on Programming Languages Design and Implementation. SIGPLAN Not 27,7 (July), 162-174.

Received October 1993; revised May 1994; accepted November 1993 and February 1994

ACM Transactions on Programming Languages and Systems, Vol 16, No 6, November 1994,



