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Abstract

An exhaustive dataflow analysis algorithm associates with
each point in a program a set of “dataflow facts” that are
guaranteed to hold whenever that point is reached during
program execution. By contrast, a demand dataflow
analysis algorithm determines whether a single given
dataflow fact holds at a single given point.

This paper presents a new demand algorithm for inter-
procedural dataflow analysis. The new algorithm has three
important properties:

e It provides precise (meet over all interprocedurally
valid paths) solutions to a large class of problems.

It has a polynomial worst-case cost for both a single
demand and a sequence of all possible demands.

The worst-case total cost of the sequence of all possible
demands is no worse than the worst-case cost of a sin-
gle run of the current best exhaustive algorithm.

1. Introduction

An exhaustive dataflow analysis algorithm associates with
each point in a program a set of “dataflow facts™ that are
guaranteed to hold whenever that point is reached during
program execution. This information can be used in a
variety of software engineering tools (for example, to pro-
vide feedback to the programmer about possible errors such
as the use of an uninitialized variable, or to determine
whether a restructuring transformation is meaning-
preserving) or can be used by an optimizing compiler (in
choosing valid optimizing transformations).

It is not always necessary to compute complete dataflow
information at all program points. A demand dataflow
analysis algorithm determines whether a given dataflow
fact holds at a given point [1,9,20,18,19,10]. Demand
analysis can sometimes be preferable to exhaustive analysis
for the following reasons:

Narrowing the focus to specific points of interest.
Software-engineering tools that use dataflow analysis
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often require information only at a certain set of pro-
gram points. Similarly, in program optimization, most
of the gains are obtained from making improvements at
a program’s “hot spots”—in particular, its innermost
loops. However, current tools typically include a phase
during which an exhaustive interprocedural dataflow
analysis algorithm is used. There is good reason to
believe that the use of a demand algorithm will greatly
reduce the amount of extraneous information com-
puted.

Narrowing the focus to specific dataflow facts of
interest. Even when dataflow information is desired for
every program point p, the full set of dataflow facts at p
may not be required. For example, it is probably only
useful to determine whether the variables used at p
might be uninitialized, rather than determining that
information for all of the variables in the procedure.
Reducing work in preliminary phases. In problems
that can be decomposed into separate phases, not all of
the information from one phase may be required by
subsequent phases. For example, the MayMod problem
is to determine, for each call site, which variables may
be modified during the call [3,7]. This problem can be
decomposed into two phases: computing side effects
disregarding aliases (the so-called DMod problem), and
computing alias information [3,8,7]. Given a demand
(e.g., “What is the MayMod set for a given call site
¢7”), a demand algorithm has the potential to reduce
drastically the amount of work spent in earlier phases
by propagating only relevant demands (e.g., “What are
the alias pairs (x, ¥) such that x is in DMod(c)”?).
Sidestepping incremental-updating problems. A
transformation performed at one point in the program
can invalidate previously computed dataflow informa-
tion at other points in the program. In some cases, the
old information at such points is no longer “safe”; the
dataflow information needs to be updated before it is
possible to perform further transformations at such
points. Incremental dataflow analysis could be used to
maintain complete information at all program points;
however, updating all invalidated information can be
very expensive. An alternative is to demand only the
dataflow information needed to validate a proposed
transformation; each demand would be solved using the
current program, so the answer would be up-to-date.
Demand analysis as a user-level operation. It is desir-
able to have program-development tools in which the
user can ask questions interactively about various
aspects of a program [17,25,16,13]. Such tools are par-
ticularly useful when debugging, when trying to under-
stand complicated code, or when trying to transform a
program to execute efficiently on a parallel machine.
Because it is unlikely that a programmer will ask ques-
tions about all program points, solving just the user’s
sequence of demands is likely be significantly less
costly than an exhaustive analysis.

Of course, determining whether a given fact holds at a
given point may require determining whether other, related
facts hold at other points. It is desirable, however, for a
demand dataflow analysis algorithm to minimize the



amount of such auxiliary information computed. Certainly
the worst-case cost of a demand dataflow algorithm (for
one demand) should be no worse than the worst-case cost
of the best exhaustive algorithm. Furthermore, it is desir-
able that the information computed in response to one
demand be reusable, so as to minimize the cost of a
sequence of demands; we call algorithms that are able to
reuse information in this way caching demand algorithms.
Ideally, the worst-case total cost of the sequence of
demands that produces complete dataflow information
should be no worse than the worst-case cost of a single run
of the best possible exhaustive algorithm; we call this the
same-worst-case-cost property. Since no non-trivial lower
bounds are currently known for dataflow analysis, it is not
possible to determine whether a demand algorithm has the
same-worst-case-cost property; however, it is possible to
determine whether a demand algorithm has this property
with respect to a particular exhaustive algorithm.

This paper presents a new caching demand algorithm for
interprocedural dataflow analysis. The new algorithm has
three important properties:

e It provides precise (meet over all interprocedurally
valid paths) solutions to a large class of problems.

e It has a polynomial worst-case cost for both a single
demand and a sequence of all possible demands.

e It has the same-worst-case-cost property with respect to

the exhaustive algorithm given in [21], which is
currently the best exhaustive algorithm for the class of
dataflow problems that can be handled precisely by our
demand algorithm.

The remainder of the paper is organized as follows: Sec-
tion 2 provides background material. First, the class of
dataflow problems that can be handled by our algorithm is
defined. Second, we show how to transform a dataflow
analysis problem in this class into a special kind of graph-
reachability problem. Section 3 presents our new algo-
rithm, which solves demands for dataflow analysis infor-
mation by solving equivalent graph-reachability demands.
Preliminary experimental results on C programs are
reported in Section 4. Section 5 discusses related work.

2. Background

The algorithm given in Section 3 can be used to solve any
interprocedural dataflow problem in which the dataflow
facts form a finite set D, and the dataflow functions (which
are of type 2°—2P) distribute over the meet operator
(either union or intersection). We call this class of prob-
lems the interprocedural, finite, distributive, subset prob-
lems, or IFDS problems, for short. The IFDS problems
include all locally separable problems—the interprocedural
versions of classical “bit-vector” or “gen-kill” problems
(e.g., reaching definitions, available expressions, and live
variables)—as well as non-locally-separable problems such
as truly-live variables [12], copy constant propagation
[11, pp. 660], and possibly-uninitialized variables. The
IFDS framework was defined in [21], where we presented
an efficient exhaustive algorithm for solving IFDS prob-
lems. That definition is summarized below.

The IFDS framework is a variant of Sharir and Pnueli’s
“functional approach” to interprocedural dataflow analysis
[23], with an extension similar to the one given by Knoop
and Steffen in order to handle programs in which recursive
procedures have local variables and parameters [15].
These frameworks generalize Kildall’s concept of the
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“meet-over-all-paths” solution of an intraprocedural
dataflow-analysis problem [14] to the “meet-over-all-
valid-paths” solution of an interprocedural dataflow-
analysis problem.

In Kildall’'s framework, an instance of a dataflow
analysis problem consists of a bounded lower semi-lattice
(the dataflow information) with meet operator 1, a
flowgraph (representing the program), and an assignment
of dataflow functions to the edges of the flowgraph. If all
of the dataftow functions are distributive, Kildall’s algo-
rithm computes the meet-over-all-paths solution to the
problem instance. Similarly, in the IFDS framework, an
instance of a dataflow analysis problem (or IFDS-problem,
for short) consists of the following:

A finite set D (the dataflow information).
A meet operator 1. In general, the meet operator can
be either union or intersection. For the purposes of this
paper we will assume that the meet operator is union.
(It is not hard to show that IFDS problems in which the
meet operator is intersection can always be handled by
transforming them to a complementary union problem.)
A supergraph G" (a collection of _flowgraphs, one for
each procedure). In supergraph G ", a procedure call is
represented by two nodes, a call node and a return-site
node. In addition to the ordinary intraprocedural edges
that connect the nodes of the individual flowgraphs, for
each procedure call—tepresented by call-node ¢ and
return-site node —G~ has three edges: an intrapro-
cedural call-to-return-site edge from c to r; an interpro-
cedural call-to-start edge from c to the start node of the
called procedure; an interprocedural exit-to-return-site
edge from the exit node of the called procedure to .
(The call-to-return-site edges are included so that the
IFDS framework can handle programs with local vari-
ables and parameters; the dataflow functions on call-
to-return-site and exit-to-return-site edges permit the
information about local variables and value parameters
that holds at the call site to be combined with the infor-
mation about global variables and reference parameters
that holds at the end of the called procedure.)
An ass1gnment of distributive dataflow functions (of
type 2P — 2P) to the edges of the supergraph.

Given an instance of an IFDS-problem, a dataflow fact
d € D, and a flowgraph node n, the demand algorithm given
in Section 3 determines whether fact d is in the meet-over-
all-valid-paths solution at node n. The distinction between
meet-over-all-paths and meet-over-all-valid-paths is neces-
sary to capture the idea that not all paths in G" represent
potential execution paths. A valid path is one that respects
the fact that a procedure always returns to the site of the
most recent call. To understand the algorithm of Section 3,
it is useful to distinguish further between a same-level valid
path (a path in G~ that starts and ends in the same pro-
cedure, and in which every call has a corresponding return)
and a valid path (a path that may include one or more
unmatched calls).

Example. Figure | shows an example program and its
supergraph G*. In G*, the path

Starty,, — nl — n2 — start, — nd — exit, — n3
is a (same-level) valid path; the path
startyg, — nl — n2 — start, — nd
is a non-same-level valid path (because the call edge



declare g: integer

A S.S<x/a>
program main -
begin
declare x: integer start o startp
read(x) ENTER main ENTER P
call P (x)
end AS.dxg) 188
nl n4
procedure P (value a: integer) READ(X) IFa>0 N
begin 88
if (@ > 0) then rS.5-tx) \ 5
read "
a = E,g)_ ¢ n2 READ(g)
: ASS
call P(a) { A$.5-{g)
print(a, g) AS.S-(a} LER
§ k n6
end a=a-g
* AS.if (acS)or(geS)
then SU {a}
rSS s else S-{a}
i CALLP
B O e + AS.5-{g)
main
EXTmain (% ] . »  n8
RETURN
FROM P
ASS-{a} 7 ‘ ASS
H / ng
A85-{a) | PRINT(a,g)
/ ASS
exitp

(a) Example program

4 EXITP

(b) Its supergraph G~

Figure 1. An example program and its supergraph G". The supergraph is annotated with the dataflow functions for the “possibly-
uninitialized variables” problem. The notation S<x/a> denotes the set S with x renamed to a.

n2 — start, has no matching return edge); the path
Startyay —> 1l — n2 — start, — nd — exit, — n8

is not a valid path because the return edge exif, — n8 does
not correspond to the preceding call edge n2 — starz,.

In Figure 1, the supergraph is annotated with the
dataflow functions for the “possibly-uninitialized variables”
problem. The “possibly-uninitialized variables” problem is
to determine, for each node n in G, the set of program
variables that may be uninitialized Just before execution
reaches n. A variable x is possibly uninitialized at n either
if there is an x-definition-free valid path to n or if there is a
valid path to n on which the last definition of x uses some
variable y that itself is possibly uninitialized. For example,
the dataflow function associated with edge né — n7 shown
in Figure 1 adds a to the set of possibly-uninitialized vari-
ables after node n6 if either a or g is in the set of possibly-
uninitialized variables before node n6.

The IFDS framework can be used for languages with a
variety of features (including procedure calls, parameters,
global and local variables, and pointers). Encoding a prob-
lem in the IFDS framework may in some cases involve a
loss of precision; for example, in languages with pointers
there may be a loss of precision for problem instances in
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which there is aliasing. Once a problem has been encoded
in the IFDS framework, the demand algorithm presented in
this paper provides (with no further loss of precision) an
efficient way to determine whether a particular dataflow
fact is in the meet-over-all-valid-paths solution to the prob-
lem.

2.1, From Dataflow-Analysis Problems to Realizable-
Path Reachability Problems

In this section, we show how to convert IFDS problems to
“realizable-path” graph-reachability problems. This is
done by transforming an instance of an IFDS problem (a
supergraph G * in whlch each edge has an associated distri-
butive function in 2°—2P) into an exploded supergraph
G*, in which each node {(n, d) represents dataflow fact
de D at supergraph node n, and each edge represents a
dependence between dataflow facts at different supergraph
nodes.

The nodes of supergraph G" are “exploded” into the
nodes of G* as follows:

For every node n in G, there is a node (n, 0) in G*.
For every node nin G", and every dataflow fact d € D,
there is a node (1, d) in G*.
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Figure 2. The exploded supergraph that corresponds to the instance of the possibly-uninitialized variables problem shown in Figure 1.
Closed circles represent nodes of G* that are reachable along realizable paths from {start,;,, 0). Open circles represent nodes not reach-

able along such paths.

The edges of G* represent the dataflow functions on the
edges of G~ as follows: Given function f associated with
edgem —>nof G :

e There is an edge in G¥ from node {m, 0) to node {n, d)
for every d € f (D).

e There is an edge in G* from node {m, d;) to node
{n, d,) for every d,,d, such that d,e f(d,) and
d, & f (D).

e There is an edge in G* from node (m, 0) to node (n, 0).

A realizable path in G? is one that corresponds to a valid
path in G°. (Similarly, a same-level realizable path is one
that corresponds to a same-level valid path.) That is, real-
izable paths respect the fact that a procedure always returns
to the site of the most recent call. In [18] we have shown
that dataflow fact d holds at supergraph node n iff there is a
realizable path in G* from node (start,,y,,0) (which
represents the fact that no dataflow facts hold at the start of
procedure main) to node {n, d).

Example. The exploded supergraph that corresponds to
the instance of the “possibly-uninitialized variables” prob-
lem shown in Figure 1 is shown in Figure 2. Closed circles
represent nodes that are reachable along realizable paths
from {start,,,;,, 0). Open circles represent nodes not reach-
able along realizable paths. (For example, note that nodes
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(n8, g) and (n9, g) are reachable only along non-realizable
paths from (start,,,;,, 0).) As stated above, this information
indicates the nodes’ values in the meet-over-all-valid-paths
solution to the dataflow-analysis problem. For instance, the
meet-over-all-valid-paths solution at node exiz, is the set
{g}. (That is, variable g is the only possibly-uninitialized
variable just before execution reaches the exit node of pro-
cedure p.) In Figure 2, this information can be obtained by
determining that there is a realizable path from (s7artpgin, 0)
to {exit,, g), but not from (start,,;,, 0) to {exit,, a). a

3. A Demand Algorithm for IFDS Problems

In this section, we show how to solve demand IFDS prob-
lems by solving equivalent realizable-path reachability
demands. The algorithm, called the Demand-Tabulation
Algorithm, is presented in Figure 3. The top-level function
of the algorithm is called IsMemberOfSolution. The call
IsMemberOfSolution({r, d)) returns true iff there is a real-
izable path from node {(startya,0) to node (r,d) in G*.
Such a path exists iff the meet-over-ail-valid-paths solution
to the dataflow problem at node n of G * includes datafiow
fact d.

IsMemberOfSolution maintains a set called Reacha-
bleNodes; an exploded-graph node {m, d) is in this set



declare

/* These sets are preserved across calls */
/* This set is preserved across calls */

G* = (N*, E*): global exploded supergraph

PathEdge, SummaryEdge: global edge set, initially empty
ReachableNodes: global node set, initially {{m, 0) |m e N*}
VisitedNodes: global node set, initially empty

ReachableNodesRelevantToDemand: global node set

/* This set is preserved across calls */

function IsMemberOfSolution({7, E): exploded supergraph node) returns boelean

declare NodeWorkList, EdgeWorkList: edge set
begin

Visit({(r, d), NodeWorkList)

ReachableNodesRelevantToDemand := &; NodeWorkList :

=@

[3]1 while NodeWorkList # & do
[4] Select and remove a node (n, d) from NodeWorkList
[5] switch n
[6] case n is a return-site node :
[7] let ¢ be the call node that corresponds to #, and let p be the procedure called at ¢
[8] EdgeWorkList ;= &
91 for each d” such that {exiz,, d') > (n, d)e E # do Propagate({exit,, d’y — {exit,, d"), EdgeWorkList) od
[10] BackwardTabulateSLRPs(EdgeWorkList)
[11] for each d’ such that {c, d’) — (n, d) ¢ (E* USummaryEdge) do Visit({c, d’), NodeWorkList) od
[12] end let
[13] end case
[14] case n is the start node of procedure p :
[15] for each ¢ € Callers(p) do
[16] for each d’ such that {c, d’) — (n, d) e E* do Visit({c, d’), NodeWorkList) od
[17] od
[18] end case
[19] default :
[20] for each {m, d’) such that {m, d’) — {(n, d) e E* do Visit({m, d’), NodeWorkList) od
211 end case
[22] end switch
{23] od
[24] UpdateReachableNodes()
[25] return((n, d) € ReachableNodes)
end
procedure Visit (n*: exploded supergraph node, NodeWorkList: node set)
begin
[26] ifn* € ReachableNodes then Insert n* into ReachableNodesRelevantToDemand
[27] elseifn* & VisitedNodes then Insert n* into VisitedNodes; Insert n* into NodeWorkList fi
[28] fi
end

procedure UpdateReachableNodes()
begin

[29] while ReachableNodesRelevantToDemand # & do
(30} Select and remove an exploded node {r, d) from ReachableNodesRelevantToDemand
[31] for each (m, d’) such that ((n, d) — (m, d’) € (E*USummaryEdge)) and {n, d) - (m, d’} is not an exit-to-return-site edge, and
({(m, d’) € VisitedNodes) and ({m, d") & ReachableNodes) do
[32] Insert {m, d’) into ReachableNodes
[33] Insert {(m. d’) into ReachableNodesRelevantToDemand
[34] od
[35] od
end

Figure 3. The Demand-Tabulation Algorithm determines whether dataflow fact d holds at flowgraph node n. Procedures BackwardTabu-

lateSL.RPs and Propagate are given in Figure 4.

when it has been determined that there is a realizable path
from (start,,;,,0) to {m, d). Before the first call on
IsMemberOfSolution is performed, ReachableNodes is ini-
tialized to { {m, 0) } for all supergraph nodes m.
IsMemberOfSolution also maintains a set called Visited-
Nodes (initially empty) that includes all exploded-graph
nodes visited during some invocation of IsMemberQOfSolu-
tion. At the end of an invocation of IsMemberOfSolution,
the nodes that were added to VisitedNodes during that
invocation and that are reachable from (start,,;,, 0) by a
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realizable path are placed in ReachableNodes by procedure
UpdateReachableNodes. Finally, if the “demand node”
(n, d) is in ReachableNodes, IsMemberOfSolution returns
true; otherwise it returns false.

IsMemberOfSolution works by starting at demand node
{(n,d) and traversing G* backwards, one edge at a time,
encountering nodes from which there are realizable paths
to (n, d). IsMemberOfSolution avoids repeating work done
on a previous call by making use of the ReachableNodes
and VisitedNodes sets. If an encountered node is in



ReachableNodes, it is inserted into the set ReachableNo-
desRelevantToDemand (line [26}), and because its reacha-
bility status is already known, its predecessors are not
explored. Otherwise, if the encountered node is not in
VisitedNodes, it is inserted into VisitedNodes and is placed
onto the NodeWorkList so that its predecessors will be
explored.

When the traversal of G? is finished, procedure
UpdateReachableNodes is used to augment the Reacha-
bleNodes set by adding all nodes {m, d) that were encoun-
tered for the first time during the current invocation of
IsMemberOfSolution, and that are reachable from
(start,,,, 0) by a realizable path. UpdateReachableNodes
starts from the nodes in ReachableNodesRelevantTo-
Demand and works forward in G, adding nodes encoun-
tered during the current invocation of IsMemberOfSolution
to ReachabieNodes.

Note that IsMemberOfSolution will ultimately return
true iff it encounters a member of ReachableNodes. The
reason it does not return immediately when such a node is
encountered is to ensure that all newly encountered nodes
that are reachable from (start,,,,0) get inserted into
ReachableNodes. This is necessary to guarantee that the
Demand-Tabulation Algorithm has the same-worst-case-
cost property with respect to the algorithm of [21] (see Sec-
tion 3.2). Note that the traversal performed by
UpdateReachableNodes only involves edges already visited
by IsMemberOfSolution during the same invocation, so this
does not increase the asymptotic cost of the algorithm when
it is used for just a single demand. The practical conse-
quences of this extra work are explored in Section 4.

The interesting aspect of the backwards traversal per-
formed by IsMemberOfSolution is the way it ensures that
only realizable paths are followed. This 1s accomplished
by the call to BackwardTabulateSLRPs at line [10], which
occurs when the node (n, d) removed from NodeWorkList
corresponds to a return-site node (i.e., n is a return-site
node in G*). The purpose of BackwardTabulateSLRPs is
to find summary edges, which represent transitive depen-
dences due to procedure calls: A summary edge represents
a same-level realizable path from a node of G that
corresponds to a call node, to a node of G* that
corresponds to the matching return-site node. Summary
edges are recorded in the (global) set named Sum-
maryEdge.  After calling BackwardTabulateSL.RPs,
IsMemberOfSolution can continue its backward traversal
across the newly discovered summary edges (line [11]).

IsMemberOfSolution calls several auxiliary subpro-
grams: function Callers(p) returns the set of call nodes that
represent calls on p; procedures Propagate and Backward-
TabulateSLRPs are shown in Figure 4. As discussed
above, the purpose of BackwardTabulateSLRPs is to find
summary edges, and to record them in the set named Sum-
maryEdge. In order to do this, BackwardTabulateSLRPs
finds path edges (which represent same-level realizable
paths in G*) whose targets are nodes of the form (exit,, d)
(i.e., nodes of G¥ that correspond to exit nodes of G
records all such path edges in the (global) set named
PathEdge.

Procedure BackwardTabulateSLRPs is a worklist algo-
rithm that starts with an initial worklist containing a set of
zero-length  path edges (edges of the form
{exit,,, d) —)(exzt d)); on each iteration of the main loop it
deduces  the existence of additional path edges and sum-
mary edges.
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Example. When IsMemberOfSolution is called with the
exploded supergraph node {(n9, g) from the example shown
in Figure 2, (i.e., the demand “Might g be uninitialized at
node n9?” is made), the following steps are performed (all
line numbers refer to lines in Figure 3):

1. Node (n9, g) is inserted into VisitedNodes and into
NodeWorkList by the call to Visit on line [2].

Node (n9, g} is removed from NodeWorkList (line [4]);
the default case (line {19]) is taken, and node (18, g) is
inserted into VisitedNodes and NodeWorkList by pro-
cedure Visit.

Node (18, g) is removed from NodeWorkList; the case
on line [6] is selected, and BackwardTabulateSLRPs is
called for the first time. This causes summary edge
(n7, g)—{n8, g) to be inserted into SummaryEdge (and
causes several other edges to be inserted into
PathEdge).

Node (n7,g) is inserted into VisitedNodes and
NodeWorkList by procedure Visit (called at line [11]).
Node (n7,g) is removed from NodeWorkList; the
default case is taken, and node (n6, g) is inserted into
VisitedNodes and NodeWorkList.

Node (n6,g) is removed from NodeWorkList: the
default case is taken, but there are no edges that satisfy
the for-loop condition (line [20]).

NodeWorkList is now empty, so UpdateReacha-
bleNodes is called. There are no nodes in the set
ReachableNodesRelevantToDemand, so no new nodes
are inserted into ReachabieNodes.

Finally, the return statement in IsMemberOfSolution is
executed. Node (7, d) is not in ReachableNodes, so the
function returns false. a

2.

3.1. Cost Of The Demand-Tabulation Algorithm

In the worst case, a single demand will cause the Demand-
Tabulation Algorithm to traverse every edge of the
exploded supergraph as well as every summary edge. To
express this cost in terms of the size of the (unexploded)
supergraph, we will use the following parameters:

N the number of nodes in supergraph G

E the number of edges in supergraph G*
Call the number of call nodes in supergraph G”
D the size of set D

The maximum number of exploded supergraph and sum-
mary edges (and thus, the worst-case running time of the
Demand-Tabulation Algorithm) varies depending on what
class of dataflow-analysis problems is being solved. We
have already mentioned the locally separable problems; it
is also useful to define the class of A-sparse problems:

Definition 3.1. A problem is h-sparse if all problem
instances have the following property: For each function f
on an ordinary intraprocedural edge or a call-to-return-site
edge of G*, the number of edges in G* that represent func-
tion f, cxcludmg edges that emanate from the 0 node, is at
most hD. a

In general, when the nodes of G” represent individual
statements and predicates (rather than basic blocks), and
when there is no aliasing, we expect most distributive prob-
lems to be k-sparse (with h <« D): Each statement changes
only a small portion of the execution state, and accesses
only a small portion of the state as well. Therefore, the
dataflow functions, which are abstractions of the state-
ments’ semantics, should be “close to” the identity func-
tion. The identity function is represented using D +1



declare G* = (N*, E*): global exploded supergraph

declare PathEdge, SummaryEdge: global edge set, initially empty
procedure BackwardTabulateSLRPs(EdgeWorkList: edge set)

begin
[11  while EdgeWorkList # & do
[2]
[3]
[4]
(5]
[6]
[7]
(8]
9]
[10]
[11]
[12]
(13]
[14]
[15]
[16]

switch n
case n a return-site node :

for each d4 such that (c,
end let
end case

case n the start node of procedure p :
for each ¢ € Callers(p) do

if (¢, ds)—>{r, d+) & SummaryEdge then
Insert {c, ds)— (r, d,) into SummaryEdge

/* These sets are preserved across calls */

Select and remove an edge (n, d,) — (exit,, d,) from EdgeWorkList

let ¢ be the call node that corresponds to n, and g be the procedure called at ¢
for each d, such that {exit,, d+) - (n, d,)e E* do Propagate({exit
d: 3= {n, dy)e (E¥USummaryEdge) do ﬁropagate((c, ds) — {exit,, d ), EdgeWorkList) od

» d3) —{exit,, d3), EdgeWorkList) od

let g be ¢’s procedure, and r be the return-site node that corresponds to ¢
for each d,, ds such that {c, d5)} > {n, d,) € E* and {exit,, d,) = {r, ds)€ Ef do

for each d such that (r, d4) — (exit,, d1) € PathEdge do Propagate({c, ds) — (exit,, d5), EdgeWorkList) od

[17} fi
[18] od
[19] end let
[20] od
[21] end case
[22] default :
[23] for each m, d such that {m, d,)—{n, d,)e E* do Propagate((m, d-) — (exit,, d ), EdgeWorkList) od
[24] end case
[25] end switch
[26] od
end
procedure Propagate(e: edge, EdgeWorkList: edge set)
begin
[27] if e & PathEdge then Insert e into PathEdge; Insert e into EdgeWorkList fi
end

Figure 4. Procedure BackwardTabulateSLRPs finds summary edges and records them in set SummaryEdge.

edges; thus, the number of edges needed to represent each
dataflow function should be roughly D.

Example. When the nodes of G” represent individual
statements and predicates, and there is no aliasing, every
instance of the possibly-uninitialized-variables problem is
2-sparse. The only non-identity dataflow functions are
those associated with assignment statements. The outde-
gree of every non-0 node in the representation of such a
function is at most two: a variable’s initialization status can
affect itself and at most one other variable, namely the vari-
able assigned to. O

The table in Figure 5 summarizes how the Demand-
Tabulation Algorithm behaves for six different classes of
problems. In each case, the time given is the worst-case
time for a single demand. The details of the analysis of the
running time of the Demand-Tabulation Algorithm can be
found in [18].

The most efficient exhaustive algorithm known for the
class of IFDS problems is the one given in [21]. Its worst-
case running times are almost identical to the times given
above; the only difference is that for an intraprocedural,
locally separable problem, the bound for the exhaustive
algorithm is O (ED), while the bound for the Demand-
Tabulation Algorithm is O(E). The similarity in the
worst-case running times of the two algorithms reflects the
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fact that (theoretically) a dataflow fact at one point might
depend on all other facts at all other points. In practice,
however, we have found that the Demand-Tabulation Algo-
rithm (applied to a single demand) is much faster than the
exhaustive algorithm (see Figure 7).

3.2. The Same-Worst-Case-Cost Property

We have designed the Demand-Tabulation Algorithm so
that it has the same-worst-case-cost property with respect
to the exhaustive algorithm of [21]. In particular, a call to
IsMemberOfSolution can re-use the sets ReachableNodes,
VisitedNodes, PathEdge, and SummaryEdge, whose values
are preserved across calls. When the Demand-Tabulation
Algorithm is used with a request sequence that places
demands on all possible nodes of G*, IsMemberOfSolution
proper will traverse a given edge in G* at most once during
the processing of the request sequence. BackwardTabula-
teSLRPs will traverse a given edge of G¥ in procedure p at
most D times (once for each node of the form (exit,, d)).
(The information accumulated in sets PathEdge and Sum-
maryEdge prevents procedure BackwardTabulateSLRPs
from performing additional work, and the information
accumulated in ReachableNodes and VisitedNodes
prevents IsMemberOfSolution proper from performing
additional work.) This is the same amount of work that
could be performed in the worst case by the exhaustive
algorithm given in [21]. Thus, the Demand-Tabulation



) - - Asymptofic running fime
Class of functions ggaggt ;gg%ef?;ggg;?tg?ggéﬁi%: f g;ggl[;r;l)éedural :)r;f)ebrlp:err(r)lcsedural
Distributive Up to O (D?) edges/function representation O(ED?) O(ED?)
h-sparse At most O (hD)) edges/function representation || O (hED) O (Call D* + hED?)
(Locally) separable | Component-wise dependences O(E) O(ED)

Figure 5. Asymptotic running time of the Demand-Tabulation Algorithm (for answering a single demand) for six different classes of

dataflow-analysis problems.

Algorithm has the same-worst-case-cost property with
respect to the exhaustive algorithm.

While this is an important property, it does not, of
course, mean that the Demand-Tabulation Algorithm will
always outperform the exhaustive algorithm. There will be
problem instances for which the exhaustive algorithm will
not achieve its worst-case cost, and it may outperform the
Demand-Tabulation Algorithm in those cases (see Figure
8).

4. Experimental Results

4.1. Background to the Experiments

We have carried out two experiments to compare the per-
formance of the Demand-Tabulation Algorithm to that of
the exhaustive algorithm of [21], and two further experi-
ments to study the trade-off between the benefit and over-
head of the caching performed by the Demand-Tabulation
Algorithm.

Three different analysis algorithms were used in the
study: (1) the Demand-Tabulation Algorithm, as described
above, (2) a non-caching version of the Demand-
Tabulation Algorithm (that returns true as soon as it
encounters a node of the form {m, 0), does not maintain the
set ReachableNodes, and reinitializes the set VisitedNodes
to & after each invocation of IsMemberOfSolution, but
does preserve the sets PathEdge and SummaryEdge across
calls to IsMemberOfSolution), and (3) the exhaustive algo-
rithm reported in [21].

All three algorithms were implemented in C and used
with a front end that analyzes a C program and generates
the corresponding exploded supergraph for two dataflow
problems: the possibly-uninitialized variables problem that
we have used as our running example, and the truly-live
variables problem [12]. A variable x is considered to be
truly live at supergraph node n iff there is a path from # to
the end of the program on which x is used in a predicate or
in a call to a library routine, or on which x is used to assign
a value to a truly-live variable. (The more standard,
locally-separable version of the live-variables problem
relaxes the third condition so that x is considered to be live
if it is used to assign a value to any variable.) It is useful to
identify assignments to non-truly-live variables; program-
ming tools might flag them as indicating possible logical
errors, and optimizing compilers could remove them.

Procedure calls via pointers to procedures, and aliasing
due to pointers were handled by our C front end as follows:
For both dataflow problems, every call via a pointer was
considered to be a possible call to every procedure of an
appropriate type that was passed as a parameter or whose
value was assigned to a variable somewhere in the pro-
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gram. For the truly-live variables problem, pointer-induced
aliasing was handled conservatively: every memory read
and every memory write via a pointer was considered to be
a possible read/write of every piece of heap-allocated
storage and of every variable to which the “address-of”
operator (&) was applied somewhere in the program. For
the possibly-uninitialized variables problem, this conserva-
tive approach was inappropriate; since the results of this
analysis are suitable for providing feedback to the program-
mer rather than for guiding an optimizing compiler, it is
more important to avoid overwhelming the programmer by
reporting hundreds of possibly uninitialized variables than
to be sure that absolutely every possibly uninitialized vari-
able has been reported. Therefore, for this problem,
memory writes via a pointer were handled as described
above for the truly-live variables problem, but memory
reads were considered to read only the value of the pointer
itself.

Tests were carried out on a Sun SPARCstation 20 Model
71 with 64 MB of RAM. The study used thirteen standard
C programs; the table in Figure 6 gives the number of lines
of preprocessed source code (with blank lines removed),
the parameters that characterize the size of the control-flow
graphs (number of procedures, number of call sites, number
of control-flow graph nodes), data for the possibly-
uninitialized variables problem (the number of uses of
scalar variables, and the number of those uses that were
found to be possibly uninitialized), and data for the truly-
live variables problem (the number of assignments to scalar
variables, and the number of those assignments that were
found to be truly live).

4.2, Experiments

Experiment 1: Single demand vs. Exhaustive

Our first two experiments compare the Demand-Tabulation
Algorithm with the exhaustive algorithm. Our first experi-
ment reflects what might happen when dataflow analysis is
used in the context of a tool that intersperses demands and
program modifications (so if an exhaustive algorithm is
used, it must be re-run whenever a demand is made follow-
ing a modification). In this case, it is reasonable to com-
pare the time required by the exhaustive algorithm with the
time required by the demand algorithm to answer a single
demand. Therefore, for this study, we recorded the follow-
ing data for each test program: (1) the time used by the
exhaustive algorithm to find all possibly uninitialized vari-
ables at all supergraph nodes; (2) the time used by the
exhaustive algorithm to find all truly-live variables at all
supergraph nodes; (3) the average time used by the



Exampi Lines of CFG statistics possibly-uninit statistics truly-live statistics
xampie source code P Call N # uses # uninit uses # assignments | # truly live assignments
diff.difth 303 13 48 616 219 4 320 277
compress 657 14 27 1472 428 0 772 679
ratfor 1531 51 | 265 2654 847 232 1245 941
struct.beauty 1701 32 1 211 2625 708 18 1273 1060
diff.diff 1761 40 | 125 3496 1178 75 1839 1538
gnugo 1963 27 87 2967 1147 120 1409 1134
twig 2555 75 | 221 4161 1278 16 2049 1813
cdecl 2577 31 | 202 2967 730 2 1519 1345
lex 2645 61 | 328 6146 2577 201 3192 2747
patch 2746 53 | 263 4850 1569 216 2592 2433
unzip 3261 39 | 125 3192 1231 185 1711 1551
tbl 3462 82 | 313 5793 2147 135 2964 2562
flex-2.4.7 9488 142 | 785 | 10893 3879 548 5119 4813

Figure 6. Test program information. (The number of uninitialized uses and the number of truly live assignments both reflect the number

of times a demand leads to a “yes” answer. However, in the case of the

truly-live variables problem, it is the instances where the demand

leads to a “no” answer—a non-live variable is being assigned to—that are of interest to a programmer or compiler.)

Demand-Tabulation Algorithm to answer a single demand
“might x be uninitialized here?” for 100 randomly selected
uses of a scalar variable x; (4) the average time used by the
Demand-Tabulation Algorithm to answer a single demand
“is x truly-live here?” for 100 randomly selected assign-
ments to a scalar variable x.

This data is summarized in Figure 7. For each test pro-
gram, for each of the two dataflow problems, the graph bars
indicate the (average) running time of the Demand-
Tabulation Algorithm for a single demand, normalized to
the time for the exhaustive algorithm; the actual times (user
time + system time in seconds) are given below each bar.

Clearly, the Demand-Tabulation Algorithm can be
expected to be much faster than the exhaustive algorithm
when the former is used to respond to a single demand.

Experiment 2: Sequence of demands vs. Exhaustive

Our second comparison of the Demand-Tabulation Algo-
rithm and the exhaustive algorithm reflects what happens
when dataflow information is desired at every program
point p. For this study we recorded: (1) the time used by
the Demand-Tabulation Algorithm to answer the sequence
of demands “might x be uninitialized here?” for every use
of a scalar variable x; and (2) the time used by the
Demand-Tabulation Algorithm to answer the sequence of
demands “is x truly-live here?” for every assignment to a
scalar variable x. This data is summarized in Figure 8.

For the truly-live variables problem, the Demand-
Tabulation Algorithm outperforms the exhaustive algo-
rithm in 9 out of 13 cases (and at worst, in one case, is
about 55% slower); however, this is true for only 4 out of
13 cases for the possibly-uninitialized variables problem
(and the Demand-Tabulation Algorithm is slightly more
than 4 times slower than the exhaustive algorithm in one

Experiment 1: Single Demand vs Exhaustive

D possibly-uninitialized variables

running

times E truly-live variables
normalized
to time of
exhaustive s
algorithm .5 [ — —
0 % I—|=. I'_% % I I I % [ Lo I_——%
tual
r:::;g demand (06 .07 22 29 29 44 37 47 90 220 .28 .33 .82 1.50 .35 157 123 1.50 1.02 110 .92 7.7 77117 4.54 6.69
times €Xh. 15 27 49 303 75279 53255 278 823 1.162.19 1081053 541012 2.31 920 275 8.64 1.89 561 127880 8$.01 96.1

diff.diffh compress ratfor struct.beauty diff.diff  gnugo

twig edecl lex patch unzip thl flex-2.5.7

Figure 7. First comparison of the Demand-Tabulation Algorithm and the exhaustive algorithm. Bars show the running times of the
Demand-Tabulation Algorithm, normalized to the times of the exhaustive algorithm. The times for the Demand-Tabulation Algorithm are
the average times required to answer a single demand (using 100 randomly selected demands).
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Experiment 2: Sequence of Demands vs Exhaustive

41" [ possibly-uninitialized variables
running é truty~live variables
times 3
normalized
to time of
exhaustive 2
algorithm
1
0 EE
actual
. demand [.09 .18 43 247
running
times  ©xh. A5 .27 49 3.03 75279 .532.55 2.78 823 1.162.19

l
g/BIE/EEEE

1.14 2,62 1.282.58 1.68 59.8 .87 3.40 232 60.02.20 870 5.97 10.05 4.00 7.31 2.70 70.8 4.176.82 34.09 83.9

1.08 105.3 .54 10.12 2.31 9.20 2.75 8.64 1.89 56.1 1.278.80 8.01 96.1

diff.diffh compress ratfor struct.beauty diff.diff

gnugo

twig cdecl lex patch unzip thl flex-2.5.7

Figure 8. Second comparison of the Demand-Tabulation Algorithm and the exhaustive algorithm. Bars show the running times of the
Demand-Tabulation Algorithm, normalized to the times of the exhaustive algorithm. The times for the Demand-Tabulation algorithm are

the total times required for all demands.

case). We believe that this is because in the case of
possibly-uninitialized variables, most of the demands
(“might x be uninitialized at this use?”) lead to a no answer,
while in the case of truly-live variables, most of the
demands (“is x truly-live at this assignment?”) lead to a yes
answer. Demands answered no correspond to unreachable
exploded supergraph nodes, so the exhaustive algorithm
does not visit those nodes or any of their predecessors;
however, the demand algorithm starts at those nodes and
visits all predecessors, eventually discovering that none of
them is in'the ReachableNodes set.

We hypothesize that when the goal is to answer demands
at all program points, and it is expected that most demands
will be answered no, the exhaustive algorithm will be the
algorithm of choice. However, when the expected number
of demands is small (for example, in an interactive tool, or
in a restructuring tool that is likely to demand dataflow
information only for a small part of a program before per-
forming a transformation), or it is expected that most
demands will be answered yes, then the Demand-
Tabulation Algorithm will be the algorithm of choice.

Experiment 3: Caching vs Non-caching demand (single
demand)

The goal of our third and fourth experiments was to study
the tradeoff between the benefit and overhead of caching,
first on a single demand and then on a sequence of
demands.

For our third experiment we applied the non-caching
demand algorithm to the same 100 randomly selected
demands used in Experiment 1 (starting the algorithm from
scratch for each demand as was done for the Demand-
Tabulation Algorithm), and we computed the average run-
ning time for a single demand. The results of this experi-
ment are shown in Figure 9. The graph bars indicate the
running time of the non-caching algorithm normalized to
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the time for the (caching) Demand-Tabulation Algorithm.

It appears that for the uninitialized-variables problem, in
the case of a single demand, caching introduces only a
modest amount of overhead. However, in all cases the
overheads for the truly-live variables problem are more
significant.

Experiment 4: Caching vs Non-caching demand (sequence
of demands)

For our final experiment, we applied the non-caching
demand algorithm to the same two sequences of demands
(for possibly-uninitialized variables and for truly-live vari-
ables) to which the Demand-Tabulation Algorithm was
applied in Experiment 2. The results of this experiment are
shown in Figure 10,

For possibly-uninitialized variables, in the case of a
sequence of demands, the benefits of caching far outweigh
its overhead. However, for truly-live variables, the non-
caching algorithm seems to be preferable to the caching
one. The reasons for this phenomenon deserve further
study; it would be desirable to understand which charac-
teristics of a dataflow problem and of a problem instance
will predict whether a caching or a non-caching algorithm
is preferable.

5. Relation to Previous Work

Until very recently, work on demand-driven dataflow
analysis only considered the intraprocedural case (cf. [1])
and work on interprocedural dataflow analysis only con-
sidered the exhaustive case (¢f. [23,6,5,15]). Because in
intraprocedural dataflow analysis all paths in the control-
flow graph are assumed to be valid execution paths, the
work on demand-driven intraprocedural dataflow analysis
does not extend to the interprocedural case, where the
notion of realizable paths is important.



Experiment 3: Caching Demand vs Non-Caching Demand (Single Demand)

running [] possibly—uninitialized variables
times
normalized
to time of E truly-live variables
caching 1
_ . % % % B =N E;_%_ %
:vcer';age non-caching .057 .059 .19 21 .24 31 .37 .36 .75 94 .24 27 70 .86 35 55 101 116 .83 .90 .76 1.39 .65 .03 3.83 4.41
ronning COChinE [064 070 22 29 29 44 37 .47 90220 28 33 82 150 35 L§7 123150 L02 110 92 .17 77 117454 669
times

diff.diffh compress ratfor structbeauty diff.diff gnugo twig cdecl lex patch unzip thl flex—2.5.7

Figure 9. Comparison of the caching and non-caching demand algorithms for a single demand. Bars show the average running times of
the non-caching algorithm, normalized to the average times of the (caching) Demand-Tabulation Algorithm.

Experiment 4: Caching Demand vs Non-Caching Demand (Sequence of Demands)

running o possibly-uninitialized variables L5 truly~live variables
times "
nom‘lalized —
to time of
caching 20 1
algorithm
10 5
) * 0
actu.al non—caching |49 234 1043 3332 7.50 3.63 30.28 42.08 5509 1661 3155 2397 2264 14 146 262 335 342 266 147 126 9.76 506 38.1 432 1122
runnin;
ti mesg caching |.09 43 114 128 1.68 .87 232 220 597 400 270 417 341 A8 247 262 258 598 340 600 8.710.05 731 70.8 682 839
diff.diffh ratfor  diff.diff twig lex unzip  flex-2.5.7 diff.diffh  ratfor  diff.diff  twig lex unzip flex-2.5.7
compress  struct gnugo cdecl patch thl compress struct gnugo cdecl patch thl

Figure 10. Comparison of the caching and non-caching demand algorithms for a sequence of demands. Bars show the running times of
the non-caching algorithm, normalized to the times of the (caching) Demand-Tabulation Algorithm.

One approach to obtaining demand algorithms for inter- whether the logic-programming approach to obtaining
procedural dataflow-analysis problems was described by demand algorithms for interprocedural dataflow analysis
Reps [20,19]. Reps presented a way in which algorithms can really produce implementations that are efficient
that solve demand versions of interprocedural analysis enough to be used in real-world program-analysis tools.
problems can be obtained automatically from their exhaus- Although the jury is still out on this issue (waiting for
tive counterparts (expressed as logic programs) by making improved logic-database implementations), it is natural to
use of the “magic-sets transformation”, a general transfor- ask a related question: “Is there a way to adapt the ideas so
mation developed in the logic-programming and that they can be used in program-analysis tools written in
deductive-database communities for creating efficient imperative programming languages?”
demand versions of logic programs [22,2,4,24]. Reps illus- In this paper, we answer this question in the affirmative:
trated this approach by showing how to obtain a demand The demand algorithm given in Section 3 can be viewed as
algorithm for the interprocedural locally separable prob- an analog of the magic-sets-transformed exhaustive
lems. Subsequent work by Reps, Sagiv, and Horwitz dataflow analysis program. However, the algorithm of Sec-
extended the logic-programming approach to the class of tion 3 has a simple, low-overhead implementation in an
IFDS problems [18,21]. (The latter papers do not make use imperative programming language (such as C). The imple-
of logic-programming terminology; however, the exhaus- mentation is based on array indexing and linked lists, and
tive algorithms described in the papers have straightfor- involves neither term-unification nor term-matching.
ward implementations as logic programs. Demand algo- A different approach to obtaining demand versions of
rithms can then be obtained by applying the magic-sets dataflow-analysis algorithms has been investigated by
transformation.) Duesterwald, Gupta, and Soffa, first for intraprocedural

Several people, leery of the (space, time, and conceptual) problems [9] and subsequently for interprocedural prob-
overheads involved in using logic databases, questioned lems [10]. In their approach, for each demand of the form
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“Is fact d in the solution set at flowgraph node x?”, a set of
dataflow equations is set up on the flow graph (but as if all
edges were reversed). The flow functions on the reverse
graph are the (approximate) inverses of the original for-
ward functions. (A special function—derived from the
demand——is used for the reversed flow function of vertex
x.) These equations are then solved using a demand-driven
fixed-point-finding procedure to obtain a value for the entry
vertex. The answer to the demand (true or false) is deter-
mined from the value so obtained.

Their techniques are somewhat more general than ours
because they can handle distributive problems on any finite
lattice, while the Demand-Tabulation Algorithm is limited
to finite subset lattices. However, our work has the follow-
ing advantages:

(i) When applied to an arbitrary IFDS problem, the worst-
case cost of the Duesterwald-Gupta-Soffa technique is
O(ED?2P). In contrast, the cost of the Demand-
Tabulation Algorithm is only O (E D?).

(ii) The Demand-Tabulation Algorithm uses only very sim-
ple operations (e.g., set insertions and membership tests
that can be implemented with marks). This makes the
algorithm very easy to implement, and makes it likely
that it will perform better than the Duesterwald-Gupta-
Soffa algorithm in practice.
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