### RISC Architectures: Fundamentals, Design Alternatives, and Futures?  
(Summary of Slides)

1. Cover Page

#### RISC in General

2. Early Statements of RISC Advantages /* Summary of first RISC paper */
3. What is RISC Architecture /* Common properties, nonproperties, and Variants */
4. RISC Genealogy /* History of RISC Architectures */
5. RISC Principles /* General and Specific Principles */
6. RISC Benefits /* Cost & Perf. -- R3000 vs 80386 */
7. Performance Equation /* Time/Task = (instr/task)(cycle/instr)(time/cycle) */
8. Model for Performance /* Performance equation written a different way */
9. Making a Fast RISC Machine /* Fast clock rate, low cycle/instr, low inst/task */
10. Why the RISC Machine Wins /* vs CISC approaches */
11. What Factors affect RISC Performance /* looking at CPI, clock rate, and instruction count */
12. Where does CPI advantage come from? /* lower CPI comes from pipelining */
13. Native Instruction Execution Rates /* Machine, Clock Rate, CPI, Native MIPS */
14. Cycles per Instruction (MHz/VUP) /* Graph showing cpi vs time for different processors */
15. Costs of RISC Approach /* Summary of Costs associated with RISC */

#### RISC vs VAX

16. The VAX Story /* Model, Clock, Cycles/instr, Native MIPS */
17. Instruction Set Usage - VAX and MIPS /* for three applications look at frequency of operation types (ALU ops, moves, branches */
18. Addressing Mode Usage /* graph showing frequency of different addressing modes */
19. VAX vs RISC Memory Bandwidth /* Comparing memory bandwidth requirements for VAX and MIPS */
20. VAX vs RISC Memory Bandwidth /* Graph showing data and instruction bytes */

**Different RISC Implementations**

21. Two Basic RISC Approaches /* Stanford/IBM vs Berkeley */
22. Register Window Scheme /* Graph showing register windows */
23. Blank
24. When Do Register Windows Work? /* Graph showing good and bad behavior for register windows */
25. Comparison of the Two Approaches /* Compare performance of register windowing */
26. Savings from Register Windows /* Compares reduction in instruction count versus optimization level for TEX and Spice on MIPS and Sparc */

**Architecture Considerations**

27. Minimizing Instruction Execution Count /* compiler optimizations to minimize instruction count */
28. Register Allocation Example /* Optimization achieved by using registers */
29. Register Usage /* Graph showing fraction of references versus number of registers */
30. Optimization Affects - Instruction Counts /* Graph showing 3 applications and the number of instructions executed using compiler optimization */
31. Optimization Affects - Instruction Frequencies /* Graph showing 3 applications and the frequency of operation type (ALU, load/store, branches). */
32. Minimizing the Cycles per Instruction /* General comments */
33. Typical RISC Pipeline /* Drawing showing typical pipeline with example of a load and branch delay */
34. Instruction Costs and Latencies /* Cost of branches and memory references, and goals for instructions */
35. Architecture and Compiler Goals /* Three architecture and compiler goals */
36. Blank
37. Loads and Stores /* General comments, along with comparison of different machines */
38. Optimizing the load delay /* Consider code example */
39. Effectiveness of Load Delay Scheduling /* Graph showing fraction of loads that cause pipeline stalls for three applications */

**Branch Architectures**

40. Different Branch Architectures /* Compare branch architectures for various machines */
41. Delayed and Cancelling Branches /* Discussion on delayed and cancelling branches */
42. What Types of Branches Occur /* Conditional and unconditional branches for DLX, 8086, and VAX architectures */
43. Branch Costs and Delays /* branch costs and delays for various machines */
44. Scheduling a delayed branch /* Drawing showing different delay slot placements */
45. Effectiveness of simple delayed branch /* Graph showing delay slots filled and usefully filled */
46. Branch Cost in Cycles for Various Schemes /* Graph showing branch cost in cycles vs branch type */
47. Total affect of Integer Pipeline Stalls /* Graph showing 3 applications and the percentage of load delay stall cycles and branch delay stall cycles */

**Floating Point on a RISC**

48. Fast Floating Point on a RISC /* challenges, approaches, difficulties and solutions */
49. FP Pipeline /* Drawing showing FP pipeline */
50. Out-of-order Completion in the FP Unit /* Issues dealing with out-of-order completion in the FP Unit */
51. MIPS R2000/3000 FP Unit /* Drawing showing MIPS FP Unit */
52. FP Pipeline Stalls /* Graph showing Fraction of all cycles in execution vs types of stalls/delays */

**Maximizing Clock Cycle Considerations**

53. Maximizing Clock Cycle /* Issues in maximizing clock cycle */
54. Instruction fetch/decode /* Minimize instruction encoding */
55. Blank
56 Pipeline Control and Interrupt Handling /* General Comments */

**Architectural Approaches**

57. Architectural Approaches /* Graph showing different architectures on graph with axis of faster clock rate vs lower CPI */
58. Superscalar /* Drawing showing superscalar */
59. Superpipelined /* Drawing showing superpipeling */
60. Superscalar vs Superpipelined /* Comparison */
61. What Limits Instruction Level Parallelism/* Application parallelism and Machine parallelism */

**Summary**

62. Final Thoughts and Open Issues