
Memory Forwarding: Enabling Aggressive Layout Optimizations
by Guaranteeing the Safety of Data Relocation

Chi-Keung Luk Todd C. Mowry
Department of Computer Science Computer Science Department

University of Toronto Carnegie Mellon University
Toronto, Canada M5S 3G4 Pittsburgh, PA 15213

luk@eecg.toronto.edu tcm@cs.cmu.edu

Abstract
By optimizing data layout at run-time, we can potentially en-

hance the performance of caches by actively creating spatial lo-
cality, facilitating prefetching, and avoiding cache conflicts and
false sharing. Unfortunately, it is extremely difficult to guarantee
that such optimizations aresafein practice on today’s machines,
since accurately updatingall pointers to an object requires perfect
alias information, which is well beyond the scope of the compiler
for languages such as C. To overcomethis limitation, we propose a
technique calledmemory forwardingwhich effectively adds a new
layer of indirection within the memory system whenever necessary
to guarantee that data relocation is always safe. Because actual
forwarding rarely occurs (it exists as a safety net), the mechanism
can be implemented as an exception in modern superscalar pro-
cessors. Our experimental results demonstrate that the aggres-
sive layout optimizations enabled by memory forwarding can re-
sult in significant speedups—more than twofold in some cases—by
reducing the number of cache misses, improving the effectiveness
of prefetching, and conserving memory bandwidth.

1. Introduction
As the gap between processor and memory speeds continues to

grow, memory latency is becoming a key performance bottleneck.
In addition, there is growing concern that thebandwidthto the off-
chip memory hierarchy may also limit performance [5]. The pri-
mary mechanism for reducing both the off-chip latency and band-
width requirements is the on-chip cache hierarchy. While caches
are an important step toward addressing these problems, they face
several well-known limitations. For example, multi-wordcache
lines can improve performance by prefetching useful data when
spatial locality is abundant, but they can also waste bandwidth and
displace useful data when it is not. Caches can suffer pathologi-
cally bad behavior due to either mapping conflicts orfalse shar-
ing [21, 34]. Prefetching techniques [9, 25, 31] can potentially
hide cache miss latency, but only if they can predict access patterns
ahead of time, and only if there is sufficient memory bandwidth.

A brute force approach of simply making caches larger is not
likely to solve these problems, in part because application problem
sizes are also increasing rapidly, and also because cache sizes are
constrained by the requirement of low access latency and by hard-
ware resource limitations. In addition, recent studies [5, 18] have
shown that the effectiveness of caches is often low because a sig-
nificant fraction of cached data is not reused before it is displaced
from the cache. Hence the first problem to address is managing
existing caches moreintelligentlyto improve their effectiveness.

Cache performance depends on two factors:whendata items
are accessed, andwherethey exist in the address space. There-
fore, software-based techniques for improving cache performance
typically do one of two things: they either restructure thecompu-
tation, or else they restructure thedata layout. The idea behind
restructuring the computation is that given a fixed data layout, we
would like to manipulate the ordering of accesses such that multi-
ple accesses to the same data item (or cache line) occur close to-
gether in time, thereby enhancing locality [8, 37]. In contrast, the
idea behind optimizing the data layout is that given that a set of
data items are accessed close together in time in the original com-
putation, we would like to actively arrange them in the address
space such that: (i) wecreate spatial localityby allocating them at
contiguous addresses (thereby enhancing the effectiveness of long
cache lines and simplifying prefetch address generation); (ii) we
avoid cache conflictsby ensuring that they do not reside in sepa-
rate lines which map into the same cache sets; and (iii) we avoid
false sharingby ensuring that items accessed by different proces-
sors fall within separate cache lines. While both approaches have
received considerable attention in the past, our focus in this study
is on facilitating data layout optimizations.

There are two possibilities for when we manipulate data layout.
The first approach—which we callstatic placement—is to assign
an object to its optimized address when it is created [6]. The sec-
ond approach is to move an object (perhaps more than once)after
it has been allocated; we refer to this latter approach asdata relo-
cation(or simplyrelocation). The advantage of static placement is
its simplicity. The advantage of relocation, however, is that it can
adapt to dynamic program behavior. Previous studies have shown
that relocation-based optimizations such ascopying[23, 33] and
clustering[11] can offer impressive performance gains.

In general, relocation-based data layout optimizations involve
the following three steps:

1. Guaranteeing Correctness:Either the programmer or the
compiler must prove that relocating the data willnever
break the program; otherwise, the optimization is unsafe.

2. Estimating the Cost/Benefit Tradeoff: The potential opti-
mization should only be performed if the performance ben-
efit is expected to outweigh the overheads involved in relo-
cating the data. This estimation could be based on some
combination of programmer knowledge, static compiler
analysis, profiling feedback, or run-time information.

3. Generating Relocation Code:Additional code must be in-
serted to perform the actual data relocation at run-time.

1063-6897/99/$10.00 (c) 1999 IEEE

88

Despite the high performance potential of many relocation-
based optimizations, the key stumbling block which often prevents
them from being used in practice is the first step—i.e.guarantee-
ing correctness. To safely move data, we must guarantee that any
future references to the object will find it at its new location. The
fundamental problem is that updating the precise set of pointers1

to a given object requires perfect aliasing information related to
that object. In general, computing such precise information is be-
yond the capabilities of the compiler,2 and is even quite difficult
for the programmer for large programs. In the face of uncertainty,
we must conservatively assume that relocating an object will break
the program—no matter how unlikely this may seem in reality—
and therefore the optimization cannot be performed.

There is one mechanism in modern systems which provides
a very limited form of safe data relocation: the virtual memory
system. The operating system can relocate an entire page of mem-
ory in the physical address space without breaking the program
by simply copying the page and updating its virtual-to-physical
mapping. One cache optimization which exploits this flexibility
is page coloring[22], whereby the operating system attempts to
avoid mapping conflicts in large off-chip caches. Therefore, by
adding a layer of indirectionwithin the memory system, we can
move data safely and transparently without any special language
or compiler support. Unfortunately, the virtual memory system
only provides this flexibility at the granularity of an entire page.
To actively create spatial localitywithin a cache line, we must have
this flexibility at aword granularity. However, applying standard
virtual memory techniques at such a fine granularity—i.e. setting
the page size to be one word—is not a viable solution, due to the
enormous overheads that this would involve. (Not only would the
number of page table entries and the TLB size grow enormously,
but also the cache tags would have to be maintained at a word
granularity.) Instead, we propose a completely different solution.

1.1. Our Solution: Memory Forwarding
To give software the flexibility to apply relocation-based data

layout optimizations at any time without concern over violating
program correctness, we propose a mechanism calledmemory for-
wardingwhich guarantees the safety of relocation at a word gran-
ularity. (In our discussion, we define the “word” size to be equal
to the size of a pointer.) The basic idea behind memory forward-
ing is that when we relocate an object, we store its new address in
its old location and mark the old location so that hardware recog-
nizes it as aforwarding address. Therefore if the program acci-
dentally accesses the old address, the hardware will automatically
forward the reference to the object’s new location, thereby always
guaranteeing the correct result. Moreover, our scheme only pays
the run-time overhead of an extra indirection when it is actually
necessary—i.e. when the alternative is to violate program seman-
tics. In the far more common cases of references to non-relocated
objects, or references that have been properly updated to point to
the new addresses of relocated objects, our scheme imposes no
performance overhead. The space overhead of our scheme is also
low (a 1.5% fixed memory cost on a 64-bit architecture).

With memory forwarding support, the decision of whether to

1We use the term “pointers” loosely to refer to any mechanism for gen-
erating an address pointing to the object in question.

2This is especially true for heap-allocated objects in languages like C.

apply a relocation-based optimization reduces solely to evaluating
its cost/benefit performance tradeoffs. In effect, memory forward-
ing enables software to optimisticallyspeculatethat when it relo-
cates an object, it has successfully updated all pointers to that ob-
ject to point to its new location. If the speculation fails, then there
is a recovery cost (i.e. dereferencing the forwarding address), but
the execution still proceeds correctly. Therefore, as in all forms of
speculation, one is gambling that the speculation is correct often
enough that the benefit outweighs the cost. Another feature of our
mechanism which helps improve these odds is that software can
optionally specify that dereferencing a forwarding address will in-
voke a user-level trap that enables software to update the offending
pointer to point to the object’s new address. Hence software can
learn from its mistakes to avoid repeating them.

1.2. Related Work
It is interesting to note that the work which is most closely re-

lated to our study occurred well over a decade ago in the context of
architectures that directly supported theLisp programming envi-
ronment [29, 32]. Performance concerns were quite different back
then: main memory was relatively small and expensive, and cache
miss latencies were less problematic because the gap between mi-
croprocessor and memory speeds was dramatically smaller. (In
fact, a number of microprocessor-based systems did not even have
caches.) Therefore the primary concern in optimizing memory
performance back then was minimizing the overallspacerequire-
ments of a program, so that it would fit into main memory and
avoid paging to disk. Two aspects of the Lisp environment made
this challenging: the need to perform automatic garbage collec-
tion, and the relative space inefficiency of the ubiquitous list struc-
tures in the language. In addition, another aspect of the Lisp lan-
guage which resulted in specialized hardware support was the need
to determine object data types at run-time.

Although the performance goals which inspired specialized
hardware and software support in these Lisp machines are quite
different from our goal of improving cache performance, there
are nonetheless a number of interesting overlaps between our sup-
port and some features of these earlier machines. We now discuss
the connections between this previous work and our study from
three different perspectives: tagged memory, garbage collection,
and data layout optimizations.

Tagged Memory: To make objects self-descriptive with re-
spect to their types, a number of Lisp architectures [29, 32] associ-
ated atagwith each memory location. As we will see later in Sec-
tion 2.1, our memory forwarding scheme also requires a form of
tagged memory to distinguish forwarding addresses from normal
data. A key difference, however, is that the tags in Lisp machines
provided much more functionality than in our case, and therefore
they required more overhead. For example, the SPUR architec-
ture [32] added eight bits of tag to each 32 bits of memory (a 25%
overhead), whereas our scheme only requires one tag bit per 64
bits of memory (a 1.5% overhead) in a modern 64-bit architecture.

A fact that is even more relevant to our study is that a form
of memory forwarding (using tagged memory) has appeared in
previous Lisp machines, albeit for a very different purpose. The
concept of aninvisible pointer(which is similar to our forwarding
address) was proposed twenty-four years ago by Greenblatt [15],
and the Symbolics 3600 [29] used one of its tags to implement

1063-6897/99/$10.00 (c) 1999 IEEE

89

a forwarding pointer. The motivation behind these mechanisms
was threefold: to enable the insertion of an item into acdr-coded
list [2], to facilitate incremental garbage collection, and to imple-
ment overlapping arrays. In contrast, our focus is on improving the
cache performance of programs written in C, and thereforenone
of these issues apply. In essence, what we are doing is taking a
very old mechanism and adapting it to a completely new purpose
within the context of modern out-of-order superscalar processors.

Garbage Collection: A common feature among these Lisp
machines is that they support some form of automatic garbage col-
lection. Garbage collection algorithms involve phases where they
identify two classes of data items: those that can bereclaimed,
and those that can berelocated. A data item can be reclaimed
when it can no longer be accessed through any pointers that are
still active, and a data item can be relocated ifall pointers to the
old location can be updated to point to the new location. In both
cases, the key challenge is identifying all pointers which point
to the given location. In languages such as Lisp, ML, and Java,
where the use of pointers is either restricted or disallowed alto-
gether, one can solve this problem in practice. In contrast, in lan-
guages such as C and C++ which do not restrict pointer usage, one
generally cannot determine which pointers point to a given object,
and therefore automatic garbage collection (and data relocation) is
extremely difficult. Finally, it is interesting to note that a form of
memory forwarding is used incopying garbagecollectors[10, 28],
whereby the forwarding addresses are used to preserve data con-
sistency during the distinct phases when collection takes place.

Data Layout Optimizations: An important topic in Lisp re-
search is how to represent list structures compactly. List com-
paction can be performed either separately or during garbage col-
lection. Most of the list compaction techniques designed for
Lisp [1, 2, 16] involve either moving or copying the original list to
a new, denser set of locations. As we discussed above, data reloca-
tion in Lisp does not pose the safety problems that we encounter in
C. However, our memory forwarding support gives us the flexibil-
ity to exploit some of these same list compaction techniques—e.g.,
a technique calledlist linearization[13]—for the sake of improv-
ing spatial locality in C programs.

1.3. Objectives of This Study
This paper makes the following contributions. First, we pro-

pose a solution to the problem of safely relocating data at a fine
granularity to improve the cache performance of programs written
in languages such as C which do not support garbage collection.
Although the concept of memory forwarding was proposed over
two decades ago in the context of Lisp machines, to the best of our
knowledge, we are the first to propose that it be adapted to facil-
itate a broad class of data layout optimizations to improve cache
performance. Second, we discuss how memory forwarding can be
implemented within modern out-of-order superscalar processors
(which are quite different from the processors in which other forms
of forwarding have been implemented in the past). Third, we sug-
gest a number of optimizations which can benefit from memory
forwarding. Finally, we quantitatively evaluate the benefits and
overheads of our scheme by using it to apply a number of differ-
ent run-time locality optimizations to a collection ofnon-numeric
applications running on a modern superscalar processor.

(a) Before data relocation

0

0

-85
-47

0
0

-99
5

old

forwarding bit

0804
0808

0816
0812

byte address

0824

0800

0820

0

0

0

?
?
?
?

new

0
?

5800
5804
5808
5812

?

5824
5820
5816

(b) After data relocation
forwarding bitbyte address

0824

5808

old

5800
5804

0800
0804
0808

0816
0812

0820

5812

5

1

1

1

5800

5808

5816 -99
5816
5820
5824

new

0
0

-47
-85 0

0

0

Figure 1. Example of data relocation with memory forwarding.
(A memory word is 8 bytes, and addresses are in decimal.)

The remainder of this paper is organized as follows. We be-
gin in Section 2 with an overview of memory forwarding and how
it can be used. Section 3 discusses issues related to implement-
ing memory forwarding in a modern processor. Sections 4 and 5
present our experimental methodology and experimental results,
respectively, to demonstrate the usefulness of the mechanism. Fi-
nally, we conclude in Section 6.

2. Memory Forwarding
We now discuss the basic concepts behind memory forward-

ing, a number of applications of this mechanism, and some issues
related to its performance.

2.1. Basic Concepts
Memory forwarding enablesaggressiveyet safedata reloca-

tion. As we mentioned earlier in Section 1.1, the basic idea is to
store the new address of an object into its old memory location,
and to mark this old location as aforwarding address. Whenever
a forwarding address is accessed, the hardware will automatically
dereference that location to find the object at its new location.

There are three implications of this mechanism in terms of
memory storage. First, the minimum unit of data that can be re-
located is the width of a pointer—which we refer to as a “word”
throughout this paper—since otherwise there would not be enough
space to store the forwarding address.3 Note that it is possible to
relocate byte-sized objects—this simply means that enough neigh-
boring bytes must be moved at the same time to comprise an entire
word. Second, a chunk of data that is relocated must be word-
aligned, so that the alignment of the forwarding address is prede-
termined. Note that this still allows us to perform byte-sized loads
and stores to forwarded objects—the byte offset into the new lo-
cation is simply assumed to be the same as it was at its original
address. We consider these first two restrictions to be quite mi-
nor, especially given that our only option for safe relocation today
is page-sized, page-aligned chunks of data. Finally, to enable the
hardware to distinguish forwarding addresses from regular data,
we attach a one-bit tag (called aforwarding bit) to each word in
memory. For a 64-bit architecture, this results in a space overhead
of only 1.5%, and therefore is reasonably efficient.

Figure 1 shows a simple example of how the memory contents
and forwarding bits are modified upon data relocation. Assume

3One could imagine creating a more elaborate scheme for compressing
the size of forwarding address pointers (e.g., by restricting the distance
between the old and new address to something that fit within its former
size), but this would involve additional complexity and fancier tag storage,
so we do not consider such an approach further.

1063-6897/99/$10.00 (c) 1999 IEEE

90

that we have a 64-bit architecture, and that we would like to relo-
cate five 32-bit elements from addresses0800 -0816 to addresses
5800 -5816 (these addresses are in decimal notation). Figure 1(a)
shows the memory contents and forwarding bits before relocation
(note that none of the forwarding bits have been set). To relocate
a word, we first copy it to its new location, and then wesimul-
taneouslywrite its new address into its old location and set the
corresponding forwarding bit at the same time. Figure 1(b) shows
the state of memory after the relocation. Notice that to relocate the
32-bit subword at address0816 , we must also relocate the 32-bit
subword at address0824 (which contains the value 5) along with
it. After the relocation, a 32-bit load of the subword at address
0804 will be forwarded to address5804 —which is computed by
adding the forwarding address (5800) to the byte offset within the
word (4)—thereby returning the correct value of-47 .

To simplify our discussion throughout the remainder of the pa-
per, we now define two terms which we will use frequently:

Initial address: The address of thefirst location accessed by a
memory reference. For example, in Figure 1(b), the initial
address of a write to word0816 is 0816 itself.

Final address: The address of thelast location accessed by a
memory reference. For example, in Figure 1(b), the final
address of a write to word0816 is 5816 . When data is
not forwarded, the final address equals the initial address.

In addition to preserving the correctness of pointerderefer-
ences, another concern with data relocation is preserving the cor-
rectness of pointercomparisons. In the presence of memory for-
warding, it is possible that two pointers with distinctinitial ad-
dresses may in fact point to the same object (i.e. share the same
final address). Hence to preserve correctness, explicit pointer
comparisons4 should be performed with respect to theirfinal ad-
dresses. Although our memory forwarding hardware does not per-
form this check automatically, the compiler can easily insert ad-
ditional instructions (described later in Section 3) to look up the
final addresses for these comparisons. We implemented such a
compiler pass, and the resulting software overhead is included in
our performance results. As we will see later in Section 5, this
overhead does not present a problem.

2.2. Applications of Memory Forwarding
While the act of dereferencing a forwarding address clearly

does not improve performance on its own, the advantage of mem-
ory forwarding support is that it enables a wide range of data lay-
out optimizations which can enhance cache performance. Not only
are these optimizations useful for mitigating the impact of mem-
ory latency, they can also be used to conserve memorybandwidth.
We now briefly describe some of these potential optimizations.

Improving Spatial Locality: A straightforward method of
actively improving spatial locality is to take data items which are
accessed close together in time, but which are scattered sparsely
throughout the address space, and pack them into adjacent mem-
ory locations. This form of data packing makes cache lines much
more effective, and it can potentially reduce the number of capac-
ity, compulsory, and conflict misses. Not only does this improve

4 In reality, we only need to worry about cases where the pointers po-
tentially point to the same type of relocatable object.

(a) Before list linearization

B3000
head 0 0

A C
0

2000400010003000

0
D

(b) After list linearization

80488000

head
A B

8032

3000

0000

8016

C

8016 8032 8048

1 1 1

8000

D8000

1

1000 4000 2000

Figure 2. Example of list linearization with memory forwarding,
assuming that cache lines and list elements are 32 and 16 bytes
long, respectively. (Addresses are in decimal.)

performance, it can also reduce memory bandwidth consumption,
which in turn can help reduce power consumption (which is be-
coming an increasingly important concern).

A good example of a technique which uses packing to enhance
spatial locality islist linearization. As we will see later in Sec-
tion 5, this technique can offer dramatic performance improve-
ments. List linearization has been an important technique for com-
pacting lists in Lisp programs, and can eliminate as much as half
of the space consumption [13]. The idea behind list linearization is
to relocate the nodes of a linked list so that they reside in contigu-
ous memory locations. Depending on whether the list structure
continues to change over time, the linearization process can be
invoked either just once, or else periodically to adapt to the chang-
ing structure. Although list linearization can potentially offer large
performance gains, it is very difficult to safely use this optimiza-
tion in practice for general C programs due to the possibility of
pointers outside of the linked list itself pointing to list elements.
Fortunately, with memory forwarding support, we can apply list
linearization at any time without worrying about whether all po-
tential pointers to list elements have been properly updated.

Figure 2 shows an example of list linearization with memory
forwarding. Before linearization, the four nodes of the list (i.e.
nodesA, B, C, andD) are scattered throughout memory such that
they reside in four separate cache lines, as shown in Figure 2(a).
List linearization packs the four nodes into a contiguous memory
region starting at location8000 , as shown in Figure 2(b). As a
result, the four relocated nodes occupy only two cache lines, rather
than four, thereby potentially eliminating half of the cache misses
due to this list as we continue to revisit it. Note that the forwarding
addresses and forwarding bits have been set properly such that we
will still maintain correct execution even if a stray pointeraccesses
a list element at its old address. However, we expect that most
accesses to the list will find it directly at its new address, thereby
enjoying the enhanced spatial locality.

Increasing Prefetching Effectiveness: The effectiveness of
prefetching fornon-numericapplications is largely limited by the
difficulties in generating prefetch addresses early enough [25]. For
example, consider the linked list in Figure 2(a), and assume that
we need to prefetch three nodes ahead to hide the entire miss la-
tency. Therefore, we would want to prefetch nodeD as soon as
we arrive at nodeA. However, the problem is that we do not know

1063-6897/99/$10.00 (c) 1999 IEEE

91

the address of nodeDuntil we have dereferenced nodesA, B, and
C—this is known as thepointer-chasing problem[25]. In con-
trast, after the list is linearized, we can trivially prefetch nodeD
at nodeA by simply prefetching the next cache line, thus avoid-
ing any pointer chasing. (We referred to this technique asdata
linearization prefetchingin an earlier publication [25].)

Reducing Cache Conflicts: Data copying[23] was orig-
inally proposed to reduce conflict misses withintiled (or
“blocked”)numeric applications. Since a given tile is reused many
times after it is brought into the cache, it is particularly problem-
atic if different elementswithin the tile conflict witheach other.
To avoid this problem, the data copying optimization first copies
a tile to a contiguous set of addresses in a temporary array before
using it; since these locations do not conflict with one another,
the problem is eliminated. Another technique calleddata color-
ing [11] was proposed as a method of reducing conflict misses in
pointer-based data structures. The idea is to partition thecache into
logically separate regions (orcolors). By relocating data structure
elements which are accessed close together in time to separate re-
gions of the cache, conflict misses can be avoided. Memory for-
warding can help facilitate both copying and coloring techniques
by guaranteeing that they are safe.

Reducing False Sharing: In cache-coherent shared-memory
multiprocessing systems,false sharing[21, 34] occurs when two
or more processors access distinct data items which happen to fall
within the same cache line (which is the unit of coherence), and
at least one access is a write. False sharing can hurt performance
dramatically as the line ping-pongs between processors despite the
fact that no real communication is taking place. By relocating
those unrelated data items to distinct cache lines, false sharing can
be avoided. Memory forwarding would be especially helpful in
avoiding false sharing inirregular shared-memory applications,
where proving that data items can be safely relocated is difficult.

In summary, memory forwarding enables a broad range of
relocation-based optimizations; we have presented just a partial
list of such optimizations. We would also like to emphasize that
these optimizations are applicable not only to caches but also to
the other levels of the memory hierarchy. For example, we can
apply data relocation to improve the spatial locality within pages
(and hence on disk) for out-of-core applications.

2.3. Performance Issues
A relocation-based optimization will improve overall perfor-

mance if two conditions hold: (i) the new data layout actually pro-
vides better memory performance than the original layout; and (ii)
the gain in the memory performance outweighs the optimization
overhead. This overhead includes the extra execution time due
to actually relocating the data, and may also include forwarding
overhead if any references actually need to be forwarded after the
relocation. While the overhead of relocating the data may seem
to be a concern at first glance, our experimental results indicate
that it is usually not a problem because relocation is invoked infre-
quently and modern processors can execute multiple instructions
per cycle. In addition, we find that the performance overhead of
forwarding is negligible in many cases because most data refer-
ences are updated properly and do not need to be forwarded. We

R = Read FBit (word* A): Read the forwarding bit of the
word at addressA into registerR.

R = Unforwarded Read(word * A): Read the value stored
in the word at addressA into registerR, with forward-
ing disabled. If the word’s forwarding bit is set, this is a
forwarding address; otherwise this is a regular data value.

*A = Unforwarded Write (register word R, bit B):a

Write the value of registerR into the word at addressA
andset the word’s forwarding bit toB atomically, with
forwarding disabled.

aIf an instruction of the underlying ISA cannot have three operands,
we can have two separate instructions forUnforwarded Write (R,0)
andUnforwarded Write (R,1).

Figure 3. Proposed instruction set extensions to support mem-
ory forwarding. (C syntax is used to improve readability.)

observe that the real performance concern is ensuring that the reor-
ganized data layout actually delivers higher memory performance
than the original layout.

3. Implementation Issues
We now discuss the support that we need from the instruction

set, the hardware, and the software to implement memory forward-
ing in modern superscalar processors.

3.1. Extensions to the Instruction Set Architecture
To exploit memory forwarding, the machine must have some

way to manipulate the forwarding information—i.e. the forward-
ing addresses and the forwarding bits. Rather than taking a purely
hardware-based approach, we propose to extend the underlying in-
struction set architecture (ISA) by adding a few instructions which
will allow software to manipulate the forwarding information di-
rectly. The advantages of this approach are its programmability
and flexibility. In addition, we expect the software overhead to be
low since forwarding information changes relatively infrequently.

Figure 3 shows our proposed ISA extensions, which consist
of three new instructions.Read FBit allows software to check
whether a given location contains a forwarding address or actual
data. Unforwarded Read andUnforwarded Write allow
software to manipulate memory with the forwarding mechanism
disabled. For example, in Figure 1(b), a normalRead (i.e. with
the forwarding mechanism enabled) of the word at address0808
will get the forwarded value of0, but anUnforwarded Read of
the same word will get5808 , which is the forwarding address. An
Unforwarded Write must change the wordandits forwarding
bit atomicallyin order to preserve data consistency.

To demonstrate how software can make use of these new in-
structions, Figure 4(a) shows two procedures for relocating a data
object of sizen words from src to tgt , and then storingtgt as
the forwarding address intosrc . ProcedureRelocate() loops
until a clear forwarding bit is read so thattgt will be appended at
the end of the forwarding chain (if any). Figure 4(b) shows a pro-
cedure calledListLinearize() (which we will use frequently
later in our experiments) which callsRelocate() to perform
list linearization. The parameterhead handle is the address of
the list head. Note that theaddressof the list head (rather than
its value) is passed intoListLinearize() because we want

1063-6897/99/$10.00 (c) 1999 IEEE

92

(a) Data Relocation
// src = address of the object before relocation
// tgt = address of the object after relocation
// n words = number of words to relocate
void Relocate(word* src, word* tgt, int n words) f

boolean relocated;
relocated = Read FBit (src);
while (relocated) f

// loop until the final address is reached
src = Unforwarded Read(src);
relocated = Read FBit (src);

g
actualRelocate(src, tgt, n words);

g

void actualRelocate(word* src, word* tgt, int n words) f
// relocate each word in the object
for (; n words > 0; --n words) f

word temp;
// save the content of src
temp = Unforwarded Read(src);
// setup the forwarding address and forwarding bit
*src = Unforwarded Write (tgt, 1);
// copy the original content ofsrc to tgt
*tgt = Unforwarded Write (temp, 0);
// prepare for the next word
src += 1; tgt += 1;

g
g

(b) List Linearization
// a pool of space for data relocation
extern char* memory pool;
// head handle = address of the list head pointer
void ListLinearize (node ** head handle) f

node ** handle, *tgt;
// start from the list head
handle = head handle;
while (*handle) f

// grab space from the pool
tgt = (node*)memory pool;
// increment the pool pointer
memory pool += sizeof(node);
// relocate the node pointed-to byhandle to the address stored intgt
Relocate(*handle, tgt, sizeof(node)/ sizeof(word));
// append the relocated node to the linearized list
*handle = tgt;
// prepare for next node
handle = &(tgt !next);

g
g

Figure 4. Procedures using the proposed ISA extensions to
implement (a) data relocation and (b) list linearization.

to modify the list head to point to the new locations after the re-
location is performed. (This effect was illustrated earlier in Fig-
ure 2(b), where the value ofhead is changed to8000 after the
linearization.) By doing so, the next time that the list is accessed
via the list head, the new locations will be accessed directly with-
out touching the old locations. Finally, note that in Figure 4(b), the
new locations for the relocated nodes are allocated from a pool of
contiguous memory, thereby creating spatial locality.

3.2. Hardware Support
We now discuss the hardware modifications necessary to sup-

port memory forwarding. The key insight which helps us keep
the hardware simple is that references which actually require for-
warding are expected to occurrarely (if ever). The forwarding
mechanism is simply a safety net which allows us to continue to
preserve program correctness in case the unexpected happens. In

other words, we can treat forwarding as anexception. We will de-
sign the hardware to be fast in the common case—i.e. a normal,
non-forwarded reference—and we are less concerned about the
performance penalty when forwarding is actually invoked, since
that is rare. Hence a legitimate option is to use a processor’s nor-
mal exception handling mechanism to implement forwarding.

One hardware requirement that was mentioned earlier in Sec-
tion 2.1 is that we need tagged memory. A number of sys-
tems which supported tagged memory have been built in the
past [29, 32]. One difference with our scheme (as discussed ear-
lier) is that we require less tag storage overhead than previous
schemes; otherwise, it is quite similar. We now discuss the more
novel features of our hardware support in greater detail.

Dereferencing Forwarding Addresses: In the presence of
memory forwarding, the data referencing mechanism must be able
to follow forwarding chainsof arbitrary lengths. More specifi-
cally, when a memory word is accessedby a data reference, its for-
warding bit is tested. If this bit is set, then the original data address
will be replaced by the contents of the word just accessed (which
contains a forwarding address), and a new memory access using
the forwarding address will be launched. This process repeats un-
til a clear forwarding bit is read (we will discuss how cycles might
be handled later in Section 3.2), at which point the data reference
can proceed as usual. One option is to implement this dereferenc-
ing mechanism purely within hardware; another is to implement it
using a software-based exception handler (where the exception is
triggered by accessing a word with its forwarding bit set). With the
ISA extensions that we propose, it would be straightforward for a
software handler to chase the forwarding pointer chain. Although
the forwarding bit cannot be tested until the memory location is
brought into the primary cache, this is no different from the delays
associated with checking ECC or parity bits.

Data Dependence Speculation: One consequence of mem-
ory forwarding is that we do not know the final data address of a
given reference until the reference is nearly completed. This de-
layed generation of the final address poses a potential problem in
out-of-order superscalar machines. These machines normally al-
low a load access to proceed before an earlier store, provided that
the load and store are to different addresses. If either address is
unknown, the conservative approach is to delay the load until both
addresses are resolved. With memory forwarding, since the final
address of a store is not known until the store actually completes,
this delay would cause the conservative approach to never execute
a load ahead of an earlier store.

Fortunately, there is a solution to this problem. A technique
calleddata dependence speculation[12, 30] allows a load to spec-
ulatively execute before an earlier store, even if the store address
is unknown. If it turns out that the load was not dependent on
the store, then the speculation succeeds; otherwise, a true depen-
dence has been violated, and the effects of the incorrect specu-
lation must be undone. Recent out-of-order superscalar proces-
sors [19, 20, 24] have already implemented some form of data
dependence speculation. With support for data dependence specu-
lation, we can speculate that the final address of a reference will be
the same as its initial address (i.e. we do not expect the reference
to be forwarded), and therefore the delayed final-address genera-
tion will not degrade performance in the common case where the

1063-6897/99/$10.00 (c) 1999 IEEE

93

reference is not forwarded after all. If forwarding does occur, then
our speculation would only be incorrect in the case where the load
and store had different initial addresses but the same final address.
In our experiments, we observed that incorrect data dependence
speculation almost never occurred; hence it appears to be a very
effective solution to supporting memory forwarding.

Handling Forwarding Cycles: A forwarding cycleis cre-
ated when software erroneously inserts an address more than once
into a forwarding chain. The hardware must have some mech-
anism for detecting and breaking forwarding cycles; otherwise,
the machine could be stalled forever chasing the forwarding chain.
Detecting forwarding cyclesaccuratelyis an expensive operation;
for each hop, the hardware would have to match the current for-
warding address against all previous forwarding addresses derefer-
enced by the same data reference. Because of this high cost—and
also because we expect forwarding cycles to be extremely rare—
we would prefer that the hardware instead perform a fast but pos-
sibly inaccurate check for a cycle during normal execution, and
only perform accurate cycle detection when it is necessary. One
possibility is to predetermine a limit on the number of forward-
ing hops that are allowed for a given data reference. We simply
maintain a counter (which could be implemented either in hard-
ware or in software) to keep track of the number of forwarding
hops performed so far, and when this count exceeds the limit, we
raise anexception. The corresponding software exception handler
will then perform an accurate cycle check. If it is a false alarm,
then we will reset the counter and resume execution; otherwise,
the execution will be aborted.

Providing User-Level Traps Upon Forwarding: In addi-
tion to thesystem-levelexception handlers which might be pro-
vided to support the dereferencing of forwarding addresses and
the detection of forwarding cycles, it may also be useful to pro-
vide a lightweightuser-leveltrapping mechanism that would be
invoked upon accessing a forwarded location. Such a mechanism
would be useful for allowing the application to tune its own per-
formance in the following two ways. First, one could write apro-
filing tool to gather forwarding-related statistics for the purpose of
improving the performance of a future execution of the program.
For example, one might record which instructions experienced for-
warding for the sake of eliminating that forwarding in future runs
of the program. Second, a user-level trap handler could be used
to optimize away forwarding (and thereby improve performance)
on-the-fly. For example, one could write a tool that updates stray
pointers on-the-fly to point directly to their correct final addresses,
thereby avoiding the need to invoke the forwarding mechanism
again. (Note that one must have application-specific knowledge
in order to do this.) A mechanism similar toinforming memory
operationtraps [17] could be used for this purpose.

3.3. Software Support
Having discussed the hardware support for memory forward-

ing, we now focus on its impact onsoftware.

Initialization of Forwarding Bits: The forwarding bit of a
memory word must already be clear when it is used by a program
for the first time. To guarantee this, the operating system must per-
form anUnforwarded Write(0,0) operation on all words

in a region of memory to initialize it before making that memory
available to an application.

Deallocating Forwarded Data: When an object is deallo-
cated, all memory reachable via the chain of forwarding addresses
for that object should be deallocated as well. A simple way to ac-
complish this is to create awrappermemory-deallocation routine
which first deallocates all of the memory allocated on the forward-
ing chain, and then calls the original memory-deallocation routine,
which can be either a system-provided procedure (e.g.,free()
in C anddelete() in C++) or a user-defined procedure if the
program performs its own memory management.

Memory Alignment: Since the minimal granularity of mem-
ory forwarding is a word, software must ensure that two different
objects which are being relocated to two different destinations do
not share the same word, since we cannot store two different for-
warding addresses in that same word. In other words, relocatable
objects must be word-aligned. Enforcing this alignment can be
accomplished either by specifying the alignment to the memory
allocator for dynamically-allocated objects, or else by tuning the
alignment option in the compiler if some relocatable objects are
statically allocated. In some compilers—e.g., the MIPS C com-
piler that we used in our experiments—aggregate objects are al-
ready aligned to word boundaries by default.

Preserving Outcomes of Pointer Comparisons: The
compiler is responsible for replacing all pointer comparisons that
could be affected by relocation with explicit code to look up and
compare final addresses. Pointer analysis techniques [14, 36] can
help the compiler avoid inserting these more costly comparisons
by ignoring cases where pointers cannot point to relocated objects.

4. Experimental Framework
To evaluate the potential performance benefits of memory for-

warding, we modeled it in a modern processor and used it to en-
able a number of relocation-based optimizations which we applied
to a collection ofnon-numericapplications. We chose to focus on
non-numeric applications because compilers are mostly unable to
guarantee the safety of data relocation in these applications. The
goals of the optimizations that we applied were improving spa-
tial locality and prefetching effectiveness. Since current compiler
technology does not support these optimizations (mainly because
their safety cannot be proven), we added these optimizations to
the applications manually. Table 1 describes the eight applications
used in our experiments along with the optimizations that we ap-
plied. All applications were run to completion in our simulations.

We added our proposed ISA extensions to the underlying MIPS
ISA by making use of a few machine instruction sequences that
never appear in ordinary programs (e.g., loading a value into a reg-
ister which is hardwired to the value zero). We modeled the full
performance effects of maintaining and dereferencing the forward-
ing addresses. The “Space Overhead” column shows the amount
of virtual memory space for accommodating relocated data; this
amount (ranging from 0.5MB to 14.9MB) does not present a prob-
lem in modern machines, and the simulation results include the
impact of this overhead on performance.

We implemented data dependence speculation in our simu-
lator. An ambiguous data dependence is stored in a table until

1063-6897/99/$10.00 (c) 1999 IEEE

94

Table 1. Application characteristics. Note: “Inst. Grad.” is the number of instructions actually graduated. The “combined” miss
rate is the fraction of loads which suffer misses in both the 16KB D-cache andthe 512KB L2 cache, using 32B cache lines. “Space
Overhead” is the amount of virtual memory space used for forwarding addresses.

Optimizations Insts. Load Miss Rate Space
Name Description Source Input Data Set Applied Grad. D-Cache Combined Overhead

BH Barnes-Hut’s N-body force Olden [7] 4K bodies Subtree clustering 1472M 2.57% 0.18% 1.7MB
calculation algorithm

Compress Compresses and decompressesSPEC95 A file of 150K Array 546M 10.20% 0.46 % 0.5MB
file in memory characters merging

Eqntott Translation of boolean SPEC92 int pri 3.eqn Packing of hash 1914M 5.22% 0.63% 0.5MB
equations into truth tables table elements

Health Simulation of the Columbian Olden max. level = 5 List 213M 30.66% 16.73% 4.7MB
health care system max. time = 500 linearization

MST Finds the minimum spanning Olden 1K nodes List linearization 302M 8.67% 5.35% 12.0MB
tree of a graph

Radiosity Virtual image rendering using IRISA [27] A scene consisting of 10 List 4552M 3.72% 0.26% 0.6MB
hierarchical radiosity lightly furnished rooms linearization

SMV A symbolic model checker CMU [26] The “dme2.smv” file List 302M 8.78% 3.75% 2.2MB
provided in the package linearization

VIS A verification and synthesis The VIS A reduction of the 8 queens List 432M 12.81% 2.53% 14.9MB
system for finite-state group [3] problem to combinational linearization
hardware systems equivalence checking

Table 2. Simulation parameters.
Pipeline Parameters

Issue Width 4
Functional Units 2 Integer, 2 FP,

2 Memory, 2 Branch
Reorder Buffer Size 64
Integer Multiply 3 cycles
Integer Divide 15 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction Scheme 2-bit Counters

Memory Parameters

Line Sizes 32/64/128/256/512 bytes
I-Cache 16KB, direct-mapped, 2 banks
D-Cache 16KB, direct-mapped, 2 banks
Data Victim Buffer 8 32-byte entries
Miss Handlers (MSHRs) 32 for data and 2 for inst.
Unified S-Cache 512KB, 2-way set-associative, 4 banks
Primary-to-Secondary 12/18/30/54/102 cycles (plus
Miss Latencies any delays due to contention)
Primary-to-Memory 75/93/129/201/345 cycles (plus
Miss Latencies any delays due to contention)
Primary-to-Secondary Bandwidth 16 bytes/cycle
Secondary-to-Memory Bandwidth 8 bytes/cycle

the two final data addresses involved in the dependence are deter-
mined. If the dependence is incorrectly speculated, then the simu-
lator will then re-execute all instructions after (and including) the
instruction which had violated the dependence. We replaced the
memory deallocation calls in the applications by calls to our own
memory deallocator which first checks whether there is any mem-
ory residing in forwarding chains which must be freed. We wrote
a compiler pass in SUIF [35] that automatically determined which
pointer comparisons needed to be replaced by final address com-
parisons. The overhead of executing these replaced comparisons
is included in our simulations.

We performed detailed cycle-by-cycle simulations of our appli-
cations on a dynamically-scheduled, superscalar processor similar
to the MIPS R10000 [38]. Our simulator models the rich details
of the processor including the pipeline, register renaming, the re-
order buffer, branch prediction, branching penalties, the memory

hierarchy (including tag, bank, and bus contention), etc. Table 2
shows the parameters used in our model for the bulk of our experi-
ments. Five line sizes—ranging from 32B to 512B—were used in
our experiments, along with five corresponding sets of miss laten-
cies (longer lines have longer transfer times).

We compiled our applications with-O2 optimization using the
standard MIPS C compilers and the SUIF compiler [35] under
IRIX 5.3. For the experiments which required the insertion of soft-
ware prefetches into the source code, we used the SUIF compiler;
otherwise, the MIPS compiler was used.

5. Experimental Results
We now present results from our simulation studies. We start

by evaluating the performance of a number of aggressive locality
optimizations enabled by memory forwarding (which we simply
refer to aslocality optimizations). Next, we study the impact of
these optimizations on prefetching effectiveness. We then examine
the details of individual applications, explaining the optimizations
that we applied to each application. Finally, we study the perfor-
mance impact of forwarding overhead for one of the applications.

5.1. Performance of Locality Optimizations
Figure 5 shows the performance of our locality optimizations

for various cache line sizes. Seven of our eight applications are
included in Figure 5. We will show the performance ofSMVsep-
arately, later in Section 5.4, since it is the only application that is
affected by forwarding overhead. For each application in Figure 5,
we show three line sizes, each of which has two cases: the bar on
the left (N) is the original case where no locality optimization is
applied, and the bar on the right (L) is the case with locality opti-
mizations. For all applications exceptBH, the three line sizes used
are32B, 64B, and128B. ForBH, we instead use line sizes of32B,
256B, and512B, because the optimization applied toBH(subtree
clustering) requires a cache line containing at least two tree nodes,
and this requires cache lines longer than 128B (this optimization
will not be turned on for lines shorter than 256B, and that is why
theN and theL bars are identical for the32B line size inBH).

Each bar in Figure 5 represents execution time normalized to
theN case of the32B line size, and is broken down into four cat-

1063-6897/99/$10.00 (c) 1999 IEEE

95

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

|200

|220

|240

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e load stall

 100 100

 127 124

 167
 150

 100 108 114 118

 149 148

 100 95 103 95
 109

 97 100

 70

 94

 55

 115

 52

 100
 89

 108
 89

 126

 99 100
 90

 114

 91

 159

 98 100
 79

 155

 84

 244

 94

N L N L
32B 256B 512B 32B 64B 128B 32B 64B 128B 32B 64B 128B 32B 64B 128B 32B 64B 128B 32B 64B 128B
(0%) (3%) (11%) (-8%) (-3%) (1%) (6%) (8%) (12%) (43%) (70%) (123%) (12%) (21%) (27%) (11%) (25%) (63%) (26%) (85%) (161%)

BH Compress Eqntott Health MST Radiosity VIS

store stall
inst stall
busy

Figure 5. Performance of locality optimizations for various cache line sizes (N = not optimized, L = locality optimized).

egories explaining what happened during all potential graduation
slots.5 The bottom section (busy) is the number of slots when
instructions actually graduate, the top two sections are any non-
graduating slots that are immediately caused by the oldest instruc-
tion suffering either a load or store miss, and theinst stallsection
is all other slots where instructions do not graduate. Note that the
load stallandstore stallsections are only a first-order approxima-
tion of the performance loss due to cache stalls, since these delays
also exacerbate subsequent data dependence stalls. In addition,
there is a percentage in parentheses below each pair of bars rep-
resenting the speedup of the optimized over the unoptimized case
for the given line size.

Our first observation from Figure 5 is that performance gen-
erally degrades when line size increases, especially for the unop-
timized cases. This trend is due to a lack of spatial locality in
these applications, which means that longer lines offerlittle perfor-
mance advantage. Fortunately, our locality optimizations (which
are enabled by memory forwarding) improve the spatial locality
of these application significantly. As we see in Figure 5, the op-
timized cases outperform the unoptimized cases for the same line
sizes in all applications exceptCompress , and the speedups in-
crease along with line size. The performance improvement can
be dramatic—with 128B lines,Health and VIS enjoy more
than twofold speedups. Among our optimizations, list lineariza-
tion is particularly powerful since it improves the performance of
Health , MST, Radiosity , andVIS substantially. It is inter-
esting to note that inHealth , the absolute performance of the
optimized cases increases along with line size. This is due to
the prefetching benefits of long cache lines after spatial locality
is greatly improved.Compress is an exceptional case where the
locality gets worse in the optimized case for 32B and 64B lines.
We also observe from Figure 5 that the instruction overhead of
these locality optimizations is usually low, which suggests that
these optimizations could be invoked even more frequently dur-
ing the execution to further improve the data layout.

While execution time is the most important performance met-
ric, further insight can also be gained by examining the impact on
total cache misses. Figure 6(a) shows the number of load D-cache
misses in the unoptimized and optimized cases for different line
sizes. Each bar is normalized to theN case of the32B line size,
and is divided into two categories indicating how a D-cache miss
is serviced. Apartial missis a D-cache miss that combines with
an outstanding miss to the same line, and therefore does not nec-

5The number of graduation slots is the issue width (4 in this case) mul-
tiplied by the number of cycles. We focus on graduation rather than issue
slots to avoid counting speculative operations that are squashed.

(a) Number of load D-cache misses

|0

|25

|50

|75

|100

|125

|150

|175

|200

 %
 o

f L
oa

d
D

-C
ac

he
 M

is
se

s partial misses: misses combined with outstanding misses

 1
00

 1
00

 9
1

 7
7 9

9
 7

3 1
00 1

27
 1

16 1
35

 1
32 1

46

 1
00

 7
9 9

3
 6

1 9
2

 5
1

 1
00

 6
2

 1
02

 4
1

 1
16

 3
1

 1
00

 9
8

 9
3

 7
4 9

8
 6

3

 1
00

 4
8

 1
04

 4
9

 1
22

 6
3

 1
00

 7
8 9

9
 5

9 9
2

 4
9

N L N L
32B 256B512B 32B 64B 128B 32B 64B 128B 32B 64B 128B 32B 64B 128B 32B 64B 128B 32B 64B 128B

BH Compress Eqntott Health MST Radiosity VIS

full misses: misses served by the secondary cache

(b) Total amount of bandwidth consumed

|0

|200

|400

|600

|800

|1000

|1200
 %

 o
f B

an
dw

id
th

 C
on

su
m

ed

 1
00

 1
00

 5
53

 4
63

11
86

 8
81

N L N L N L
32B 256B 512B

BH

|0

|100

|200

|300

|400

|500

|600

|700 between the secondary cache and memory

 1
00

 9
2

 2
25

 1
86

 4
98

 3
96

 1
00

 8
0 1

68
 1

07
 2

79
 1

49

 1
00

 6
5 1

74
 7

9
 3

47
 1

08

 1
00

 1
11 1

75
 1

49
 3

72
 2

43

 1
00

 5
6

 2
03

 9
5

 4
94

 2
14

 1
00

 7
9

 2
26

 1
21

 4
51

 1
73

N L N L N L N L N L N L N L N L N L N L N L N L N L N L N L N L N L N L
32B 64B 128B 32B 64B 128B 32B 64B 128B 32B 64B 128B 32B 64B 128B 32B 64B 128B

Compress Eqntott Health MST Radiosity VIS

between primary caches and the secondary cache

Figure 6. Additional performance metrics for the impact of lo-
cality optimizations (N = not optimized, L = locality optimized).
The y-axes are normalized to the N cases of the 32B line size.

essarily suffer the full miss latency. Afull miss, on the other hand,
does not combine with any access and therefore suffers the full la-
tency. Figure 6(a) clearly demonstrates that the improved spatial
locality offered by locality optimizations reduces the miss count
substantially, with more than a 35% reduction in misses in 11 out
of the 21 cases (seven applications with three line sizes each). In
many cases, both partial misses and full misses are reduced, and
hence the total miss penalty decreases accordingly.

Figure 6(b) shows another useful performance metric: the total
amount of bandwidth consumed by our applications. Each bar in
Figure 6(b) denotes the total number of bytes transferred between
the primary and secondary caches (the bottom section), and the
amount transferred between the secondary cache and main mem-
ory (the top section). Again, each bar is normalized to theN case
of the32B line size. It is clear from Figure 6(b) that locality op-
timizations reduce the bandwidth consumption in nearly all cases,
and achieve a bandwidth reduction of twofold or more in a few
cases. Thus we see that these optimizations deliver not only higher
performance, but also reduced bandwidth consumption.

5.2. Impact on the Effectiveness of Prefetching
We now turn our attention to the interaction between our lo-

cality optimizations and the effectiveness of prefetching. Based
on a profile of each application, we added software prefetches
for a few static loads that suffer significantly from cache misses.
Prefetches are inserted at the earliest points in the program where
the prefetch addresses are known (this is done in an identical fash-
ion for both the original and locality optimized cases). We assume

1063-6897/99/$10.00 (c) 1999 IEEE

96

|0

|20

|40

|60

|80

|100

|120

|140

|160

|180

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e load stall

 1
00

 1
00

 9
7

 1
01

 1
00 1
08

 1
00 1
07

 1
00

 9
5

 1
01

 9
3

 1
00

 7
0

 6
4

 2
9

 1
00

 8
9

 9
5

 8
6 1
00

 9
0 1
00

 8
8 1
00

 7
9

 1
16

 8
2

N L NP LP N L NP LP N L NP LP N L NP LP N L NP LP N L NP LP N L NP LP
(0%) (-3%) (-8%)(-6%) (6%) (8%) (43%)(118%) (12%)(10%) (11%)(14%) (26%)(42%)

BH Compress Eqntott Health MST Radiosity VIS

store stall
inst stall
busy

Figure 7. Performance impact of locality optimizations on
prefetching. (N = not optimized, L = locality optimized, NP
= prefetching without locality optimizations, LP = prefetching
with locality optimizations).

that a single prefetch instruction can prefetch one or more consec-
utive cache lines (i.e.block prefetchingis supported). For both the
unoptimized and optimized cases, we experimented with a range
of prefetch block sizes, and we report the results with the block
size that performed the best for each case.

Figure 7 shows how prefetching performs both with (LP) and
without (NP) locality optimizations. For the sake of comparison,
theN andL cases from Figure 5 are also included in Figure 7. The
cache line size is fixed at 32B. We observe from Figure 7 that the
performance of prefetching is improved by locality optimizations
in five applications, and two of them (VIS andHealth) enjoy
speedups of over 40%. We note that four of these five applica-
tions operate heavily on linked lists, and previous research [25] has
shown that prefetching linked lists—especially those that are short
and traversed within small loop bodies—is particularly difficult
becauseof the pointer-chasing problem. As we can see in Figure 7,
the list linearizationoptimization is quite successful in alleviating
this problem. With the exception ofVIS (which experiences con-
siderable prefetching overhead), in the remaining four out of five
applications where the locality is substantially improved, combin-
ing locality optimizations and prefetching (LP) performs better
than either technique alone (most noticeably inHealth). There-
fore, it appears that prefetching and our locality optimizations are
complementary in nature.

5.3. Case Studies
Having studied the overall performance, we now look at the

individual applications in more detail.

Health, MST, Radiosity, and VIS: We apply the same lo-
cality optimization to all four of these applications:list lineariza-
tion. The structure of the linked lists used in these applications is
modified throughout the program execution, and therefore list lin-
earization is invoked periodically. To make our discussion more
concrete, we useVIS as a representative example.VIS is a large
application, consisting of more than 150,000 lines of C code. This
program makes extensive use of a generic list library which imple-
ments many common list operations. Our optimizations are local-
ized within this library. We optimize the locality of list processing
as follows. We add a counter field to the head record of each list
to count how many insertion or deletion operations have been per-
formed on the list since the last time that the list was linearized.
The list linearization procedureListLinearize() —shown
earlier in Figure 4(b)—is invoked whenever the list’s counter ex-
ceeds a threshold, which was arbitrarily set to 50 in our experi-
ments. The counter is reset after each linearization. Despite the
simplicity and usefulness of this optimization, performing it with-
out the support of memory forwarding is dangerous due to the fact

(a) Original (b) Optimized

PTERM
short integers

hash table

i+1

i i+1

i

Figure 8. Locality optimization for Eqntott (objects in the
same shaded region are allocated to contiguous memory).

(a) Original (b) Subtrees clustered

Figure 9. Example of the subtree clustering applied to BH
(nodes in the same shaded region are in the same cache line).

that most functions in this library return pointers to list elements,
which can be scattered across any of the over hundred source files
of VIS . The program behave incorrectly if after a list is linearized,
it is later accessed using a pointer to the middle of the list that
existed before the linearization. Fortunately, memory forwarding
allows us to simply ignore this hazard, thereby safely resulting in
an over twofold performance gain with 128B lines.

Eqntott: The most interesting data structure inEqntott is a
hash table which stores pointers to a record of typePTERM. A
PTERMrecord in turn contains a pointer to an array of short in-
tegers. The original layout of this data structure is shown in Fig-
ure 8(a). We optimize the locality by (i) relocating aPTERMrecord
and its short integer array into a single chunk of memory, and (ii)
putting these chunks into contiguous memory locations in increas-
ing order of the hash index. The optimized layout is shown in
Figure 8(b). This relocation optimization is invoked only once in
the program, immediately after the hash table is constructed.

BH: In BH, an octree is constructed and then traversed at each
time step of the N-body force calculation. The octree is con-
structed in a depth-first order, but the traversal order is fairly ran-
dom. We improve the locality of the traversal by clusteringnon-
leaf nodes of the tree. We do not cluster leaf nodes since they are
actually linked together by a list and accessed via list traversals.
Subtree clustering [11] attempts to pack nodes of a subtree into a
cache line, in the most balanced form. Locality will be improved
if the next node to be visited—which can be any of the children
of the current node—is already in the current cache line. Figure 9
illustrates this optimization using a binary tree. Figure 9(a) shows
the original memory layout of the tree, which was created using a
pre-order traversal, and Figure 9(b) shows the memory layout af-
ter subtree clustering. Since a non-leaf node inBHis 78B long, we
need cache lines of 256B or longer to do meaningful clustering.

Compress: The most relevant data structures inCompress
are two hash tables, namelyhtab andcodetab , which are im-
plemented using arrays. Indices tohtab are computed through

1063-6897/99/$10.00 (c) 1999 IEEE

97

(a) Execution time (b) Miss count

|0

|20

|40

|60

|80

|100

|120

|140

|160

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e load stall

 100

 164

 97

N L Perf

store stall
inst stall
busy

|0

|20

|40

|60

|80

|100

|120

|140

|160

 %
 o

f
L

o
ad

/S
to

re
 D

-C
ac

h
e

M
is

se
s partial misses

 100

 150

 93 100
 121

 90

N L Perf N L Perf
Loads Stores

full misses

(c) Distribution of number (d) Average load and
of forwarding hops store latencies

|0

|20

|40

|60

|80

|100

 %
 o

f
L

o
ad

s/
S

to
re

s

92.3

 7.7

98.3

 1.7
0 1 0 1
Loads Stores

Number of Forwarding Hops

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10
 N

u
m

b
er

 o
f

C
yc

le
s forwarding

 5.6

 8.3

 5.2

 3.5

 4.9

 3.2

N L Perf N L Perf
Loads Stores

ordinary

Figure 10. Performance results for SMV. (N = not optimized,
L = locality optimized with realistic forwarding, Perf = locality
optimized with perfect forwarding). The line size is fixed at 64B.

hashing, butcodetab always shares the same index values
as htab . Therefore, spatial locality might be improved if
codetab[i] could be next tohtab[i] in the memory. We
achieve this by copying the two tables into a single larger tableT
such thathtab[i] andcodetab[i] occupy adjacent elements
in T. However, as we have already seen in Figure 5, performance
is in fact degraded by this optimization for 32B and 64B lines due
to worse locality than in the original code.

5.4. Impact of Forwarding Overhead
In each of the applications that we have studied so far, we were

successful enough at updating the appropriate pointers to point to
a relocated object’s new location that the forwarding mechanism
was almost never invoked. (At the same time, we would like to
point out that without memory forwarding support, we would not
have been able to apply these optimizations because they were not
provably safe.) As a result, the performance of dereferencing a
forwarding address did not matter in these cases. To quantify the
impact of forwarding overhead in a case where it does matter, we
now focus onSMV, which is the only application we studied that
experiences significant forwarding after data relocation.

SMVis a model checking program which makes extensive use
of Binary Decision Diagrams (BDDs) [4]. The BDD nodes are
connected both through a hash table and through binary trees. The
hash table is organized as an array of buckets pointing to linked
lists. Since more cache misses occur during hash table accesses
than binary tree accesses, we attempted to improve locality by lin-
earizing the lists stored in the hash table. Unfortunately, since our
optimized code is not able to update the tree pointers to point to
a relocated object’s new address, forwarding does occur whenever
relocated BDD nodes are accessed via the tree pointers.

Figure 10 shows our performance results forSMV. In addition
to the cases without (N) and with (L) locality optimization, as
shown in earlier graphs, we also show a case with locality opti-
mization andperfectforwarding (Perf). We say that memory for-
warding is perfect if all references to relocated objects access them
directly at their new addresses, and hence no forwarding is actu-

ally required. While this latter case is not achievable, it represents
a useful bound on performance. As we see in Figure 10(a), the
performance of schemeL is degraded by forwarding in two ways.
First, the act of dereferencing forwarding addresses incurs extra
time. Second, when forwarding occurs, both the old and new loca-
tions of relocated data are accessed, thereby degrading cache be-
havior. With perfect forwarding, there is no forwarding overhead
and the performance does improve. However, the improvement is
only marginal due to the fact that we cannot optimize the layout to
accelerate both the hash table and tree access patterns.

To provide further insight into the source of the forwarding
overhead, Figure 10 presents three additional performance met-
rics. Figure 10(b) shows the impact of the schemes on the num-
ber of load and store data cache misses. As we see in this figure,
schemeL suffers a noticeable increase in misses. Figure 10(c)
shows that 7.7% of loads and 1.7% of stores require one forward-
ing hop under schemeL . Finally, Figure 10(d) shows the average
number of CPU cycles needed to complete a load or store under
each scheme. Each bar in Figure 10(d) is divided into two sec-
tions explaining the reason for the stall. Theforwardingsection
represents the time spent dereferencing forwarding addresses, and
the ordinary section includes cache hit and miss latencies. The
ordinarysections of schemeL increase due to the cache pollution
effects of touching the forwarding pointers, as mentioned earlier.
As we see in Figure 10(d), both the latency of dereferencing a for-
warding address and its resultingcache pollution effects play sig-
nificant roles in the overall performance degradation. A profiling
tool based on user-level traps (as discussed earlier in Section 3.2)
could potentially identify cases such as this where forwarding oc-
curs too frequently.

6. Conclusions

As changes in technology continue to alter the landscape of
what constitutes a major performance bottleneck, it is sometimes
worth re-examining old architectural ideas that have fallen out of
fashion to see whether they can be adapted to serve completely
new purposes. In this paper, we have examined such a technique:
memory forwarding. Although the original concept was proposed
to facilitate garbage collection in early Lisp machines, we have
demonstrated that memory forwarding can be adapted to address
the entirely modern problem of enhancing cache performance. In
addition, we have shown that it is quite feasible to implement
this mechanism within modern out-of-order superscalar proces-
sors, largely because forwarding can be treated as an exception.

By liberating aggressive relocation-based data layout optimiza-
tions from concerns over violating program correctness, memory
forwarding can enable impressive performance gains: we observe
over twofold speedups in two applications. These optimizations
are useful not only for hiding memory latency, but also for re-
ducing memory bandwidth consumption. Although one must still
exercise caution not to use forwarding carelessly, a user-level trap
mechanism can help identify and avoid cases where pointers have
not been updated successfully. In summary, memory forwarding
is a powerful tool which makes a large class of optimizations that
were promising in theory useful in practice. Its applicability ex-
tends beyond caches to the rest of the memory hierarchy (e.g.,
disks), and we advocate that it be supported in future processors.

1063-6897/99/$10.00 (c) 1999 IEEE

98

7. Acknowledgments
We thank Daniel Meneveaux for providing his radiosity pro-

gram. Chi-Keung Luk is partially supported by a Canadian Com-
monwealth Fellowship. Todd C. Mowry is partially supported by
an Alfred P. Sloan Research Fellowship, and by a Faculty Devel-
opment Award from IBM.

References

[1] H. G. Baker. List processing in real time on a serial computer.Com-
mun. ACM, 21(4):280–294, April 1978.

[2] D. G. Bobrow and D. W. Clark. Compact encodings of list structure.
ACM TOPLAS, 1(2):267–286, October 1979.

[3] R. K. Brayton, G. D. Hachtel, A. S. Vincentelli, F. Somenzi, A. Aziz,
S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,
R. Ranjan, S. Sarwary, T. R. Shilpe, G. Swamy, and T. Villa. VIS:
a system for verification and synthesis. InProceedings of the 8th
International Conferenceon Computer Aided Verification, July 1996.

[4] R. E. Bryant. Graph-based algorithms for Boolean function manipu-
lation. IEEE Trans. on Comp., C-35(8):677–691, 1986.

[5] D. Burger, J. R. Goodman, and A. Kagi. Memory bandwidth lim-
itations of future microprocessors. InISCA’96, pages 78–89, May
1996.

[6] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data
placement. InASPLOS-VIII, October 1998.

[7] M. C. Carlisle and Anne Rogers. Software caching and computation
migration in olden. InProceedings of PPoPP’95, pages 29–38, July
1995.

[8] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler optimizations
for improving data locality. InASPLOS-VI, pages 252–262, October
1994.

[9] T.-F. Chen and J.-L. Baer. Effective hardware-baseddata prefetching
for high-performanceprocessors.IEEE Trans. on Comp., 44(5), May
1995.

[10] C. J. Cheney. A nonrecursive list compacting algorithm.Commun.
ACM, 13(11):677–678, Nov 1970.

[11] T. M. Chilimbi, J. R. Larus, and M. D. Hill. Tools forcache-
conscious data structures. InPLDI’99, May 1999.

[12] G. Chrysos and J. Emer. Memory dependency prediction using store
sets. InISCA’98, pages 142–153, June 1998.

[13] D. W. Clark. List structure: measurements, algorithms, and encod-
ings. PhD thesis, Carnegie-Mellon University, August 1976.

[14] R. Ghiya and L. J. Hendren. Is it a Tree, a DAG, or a Cyclic Graph?
A shape analysis for heap-directed pointers in C. InProceedings of
the 23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 1–15, January 1996.

[15] R. Greenblatt. The LISP Machine. Technical Report Working Paper
79, M.I.T. Artificial Intelligence Laboratory, November1974.

[16] W. J. Hansen. Compact list representation: Definition, garbage col-
lection, and system implementation.Commun. ACM, 12(9):499–507,
September 1969.

[17] M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith. Inform-
ing memory operations: Providing memory performance feedback in
modern processors. InISCA’96, pages 260–270, May 1996.

[18] A.S. Huang and J. P. Shen. A limit study of memory requirements
using value reuse profiles. InMICRO-28, pages 71–81, Dec 1995.

[19] D. Hunt. Advanced performance features of the 64-bit PA-8000. In
IEEE CompCon’95, March 1995.

[20] IBM. PowerPC 620 Risc Microprocessor Technical Summary, Octo-
ber 1994.

[21] T.E. Jeremiassen and S.J. Eggers. Reducing false sharing on shared
memory multiprocessors through compile time data transformations.
In Proceedings of PPoPP’95, July 1995.

[22] R. E. Kessler and M. D. Hill. Page placement algorithms for large
real-indexed caches.ACM Trans. on Comp. Sys., 10(4), Nov 1992.

[23] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance
and optimizations of blocked algorithms. InASPLOS-IV, pages 63–
74, April 1991.

[24] D. Leibholz and R. Razdan. The Alpha 21264: A 500 MHz Out-of-
Order Execution Microprocessor. InIEEE CompCon’97, February
1997.

[25] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recur-
sive data structures. InASPLOS-VII, pages 222–233, October 1996.

[26] K. L. McMillan. The SMV system. Carnegie-Mellon University, Feb
1992.

[27] D. Meneveaux, K. Bouatouch, and E. Maisel. Memory management
schemes for radiosity computation in complex environment. Techni-
cal Report PI 1097, IRISA/INRIA, 1996.

[28] M. L. Minsky. A Lisp garbage collector algorithm using serial sec-
ondary storage. Technical Report Memo 58 (rev.), Project MAC,
M.I.T., Cambridge, Mass., 1963.

[29] D. A. Moon. Architecture of the symbolics 3600. InISCA’85, pages
76–83, 1985.

[30] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dynamic spec-
ulation and synchronization of data dependences. InISCA’97, pages
181–193, June 1997.

[31] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of
a compiler algorithm for prefetching. InASPLOS-V, pages 62–73,
October 1992.

[32] G. S. Taylor, P. N. Hilfinger, J. R. Larus, D. A. Patterson, and B. G.
Zorn. Evaluation of the SPUR Lisp architecture. InISCA’86, pages
444–452, 1986.

[33] O. Temam, E. D. Granston, and W. Jalby. To copy or not to copy: A
compile-time technique for assessing when data copying should be
used to eliminate cache conflicts. InProceedings of Supercomput-
ing’93, pages 410–419, November 1993.

[34] J. Torrellas, M. S. Lam, and J. L. Hennessy. False sharing and spatial
locality in multiprocessorcaches.IEEE Trans. on Comp., 43(6):651–
663, 1994.

[35] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M.
Anderson, S. W.K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall,
M. S. Lam, and J. L. Hennessy. SUIF: An infrastructure for research
on parallelizing and optimizing compilers.ACM SIGPLAN Notices,
29(12), Dec 1994.

[36] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer anal-
ysis for C programs. InPLDI’95, pages 1–12, June 1995.

[37] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In
PLDI’91, pages 30–44, June 1991.

[38] K. Yeager. The MIPS R10000 superscalar microprocessor.IEEE
Micro, April 1996.

1063-6897/99/$10.00 (c) 1999 IEEE

99

