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ABSTRACT 
 

NASA’s Human Space Flight program depends heavily on spacewalks performed by 
human astronauts.  These Extra-Vehicular Activities (EVAs) are risky, expensive, and 
complex.  In collaboration with the Defense Advanced Research Projects Agency 
(DARPA), NASA is developing a robotic astronaut’s assistant called Robonaut that can 
help reduce human EVA time and workload.   
 
This project designed and implemented a hand-eye calibration scheme for Robonaut, Unit 
A. The intent of this calibration scheme is to improve hand-eye coordination of the robot.  
The basic approach is to use kinematic and stereo vision measurements, namely the joint 
angles self-reported by the right arm and 3-D positions of a calibration fixture as 
measured by vision to estimate the transformation from Robonaut’s base coordinate 
system to its hand coordinate system and to its vision coordinate system.  
 
Two methods of gathering data sets have been developed, along with software to support 
each.  In the first, the system observes the robotic arm and neck angles, and measures the 
3-D position of a calibration fixture using Robonaut’s stereo cameras, and logs these 
data.  In the second, the system drives the arm and neck through a set of prerecorded 
configurations, and data are again logged. 
 
Two variants of the calibration scheme have been developed.  The full calibration scheme 
is a batch procedure that estimates all relevant kinematic parameters of the arm and neck 
of the robot.  The “daily” calibration scheme estimates only joint offsets for each 
rotational joint on the arm and neck, which are assumed to change from day to day.  The 
schemes have been designed to be automatic and easy to use so that the robot can be fully 
recalibrated when needed such as after repair, upgrade, etc, and can be partially 
recalibrated after each power cycle. 
 
The system has been implemented on Robonaut Unit A and has been shown to reduce 
mismatch between kinematically derived positions and visually derived positions from a 
mean of 13.75cm using the previous calibration to means of 1.72cm using the full 
calibration procedure and 1.85cm using the “daily” calibration procedure.  This improved 
calibration has already enabled the robot to more accurately reach for and grasp objects 
that it sees within its workspace. The system has been used to support an autonomous 
wrench-grasping experiment and significantly improved the workspace positioning of the 
hand based on visually derived wrench position estimates. 
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INTRODUCTION 

 
The Dexterous Robotics Laboratory (DRL) at NASA Johnson Space Center (JSC) has 
developed a humanoid robot astronaut assistant called Robonaut [1].  Robonaut, shown in 
Figure 1, has been designed as an assistant to astronauts during EVA tasks, and has 
primarily been teleoperated by a remote human operator.  The DRL is beginning to 
implement several semi-autonomous and fully autonomous controllers for Robonaut, 
necessitating improved hand-eye coordination for the system.  This report documents two 
methods for gathering kinematic and visual data, and two automatic hand-eye calibration 
schemes developed for Robonaut in support of these modes. 
 

 
 

Figure 1:  Ground-based Robonaut system 
 
Prior Work 
 
Much previous work has been done on the self-calibration of redundant manipulators 
using internal or external kinematics constraints [2-5].  Of particular note is the treatment 
of Bennett and Hollerbach of a vision or metrology system as an additional kinematic 
link [5-6], allowing us to treat a one-arm plus vision setup as a closed kinematic chain.  
This approach allows us to leverage works on the automatic self-calibration of closed 
kinematic chains, such as [7]. 
 
One precondition of this approach is the accurate localization of a point or points of the 
arm’s kinematic chain in the coordinate system of the eyes.  Several other calibration 
schemes utilize special visual markers [4] or LEDs to localize points: we opted for a 
spherical calibration fixture for several reasons, described later in this paper.  In order to 
accurately locate the spherical fixture in the image, a generalized Hough transform was 
used.  The generalized Hough transform is described in [8,15]. 
 
The developed system is a closed-loop system.  It reduces the errors between visually and 
kinematically derived predictions, but does not necessarily adjust these parameters to 
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match the workspace.  If the visual system is not well calibrated, via for example, the 
procedures described in [9-11,19], the kinematic adjustments performed by this process 
will not correlate well with workspace positions.  
 
Task Background 
 
Robonaut has historically been operated by a human teleoperator.  The DRL is increasing 
the autonomy level of the tasks performed by Robonaut.  This includes, for example, the 
autonomous modification of previously trained behaviors such as wrench grasping.  In 
this experiment, described in more detail later in this report, the teleoperator grasps 
wrenches in several different locations in the workspace.  Robonaut then visually 
observes a wrench in a new location in the workspace and modifies and combines the 
trained behaviors to grasp this wrench.  This task obviously requires good hand-eye 
coordination. 
 
One unfortunate aspect of the design of the arms for Robonaut Unit A is that all joint 
encoders are relative.  As the arm is powered down in the evening and restarted the next 
morning, the positions of all joints on the 7DOF right arm and the 2DOF neck can 
change, leading to errors in self-reported joint angles.  Errors in these angles, as well as 
uncertainty in the as-built kinematic parameters of the arm, have lead to workspace errors 
of up to 10-15cm in various situations.  While human teleoperators are very good at 
correcting for this type of systematic error, it is unacceptable for the degree of autonomy 
now being required of Robonaut. 
 
The goals for this project were to develop a closed-loop automatic kinematic-visual 
calibration scheme for Robonaut Unit A.  Two variants on this scheme were developed.  
In the first, a set of measurements is used to estimate all relevant kinematic parameters of 
the robot.  In the second, a much smaller set of measurements is used to estimate only the 
offsets in reported joint angles for the arm and neck. The intent is to perform the full 
calibration when the unit is upgraded, changed, repaired, etc, and the partial calibration 
after each power cycle. 
 
These procedures are integrated with Robonaut’s visual cortex, but can also be used to 
update the procedures used to perform motion planning and execution for the arm when it 
is being commanded by visually derived data. 
 
Kinematic Model 
 
Robonaut’s arm is a redundant manipulator with 7 degrees of freedom.  This manipulator 
can be described by 7 homogenous transformations Aj from link j to link j-1 as defined 
by the Denavit-Hartenberg (DH) convention.  There are two common structures for the 
definition of Denavit-Hartenberg Parameters (DHPs): one involving a screw about the zi 
axis followed by a screw about the xi’ axis (the rotated xi axis) [12,13] and one involving 
a screw about the xi axis followed by a screw about the zi’ axis [14].  In addition to the 
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screw order, these systems differ in their conventions for placing coordinate axes relative 
to links.  DHPs for equivalent manipulator systems will therefore differ in the two 
structures.  In this work, we utilize the former, where                                                        
Aj = Trans(x,aj)Rot(x,? j)Rot(z,? j)Trans(z,dj), Rot implies a rotation about an axis, and 
Trans implies a translation along an axis.  The position and orientation of the last link can 
be computed by a sequence of DH transformations defining the kinematic model Tc = 
A1A2A3…Anf where nf is the number of degrees of freedom.  Both the 7DOF 
transformation from the chest coordinate system to the hand coordinate system and the 
2DOF transformation1 from the chest coordinate system and the eye coordinate system 
are parameterized in this way.  Figure 2 shows the coordinate systems used in Robonaut. 
 
 

 
Figure 2: Robonaut’s Coordinate Systems 

 

                                                 
1 For simplicity, and to allow for automatic calibration of the helmet-camera transform, we use 3 degrees of 
freedom in the chest-head transform.  On Unit A, the joint angle wi ll always be zero for the third DOF, but 
Unit B has active head roll as well as pitch and yaw.   
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CALIBRATION PROCEDURES 

 
We have developed two procedures for gathering calibration data from the robot.  In the 
first, the robot is observed under external control and data are logged.  In the second, the 
robot is actuated to each of a set of prerecorded target configurations, and data are again 
logged.  We have developed two variants of the procedure to establish a set of DHP 
values.  In the daily calibration variant, estimates are generated only for the joint angle 
offsets.  In the full calibration variant, estimates are generated for all relevant DHPs. 
 
Supporting Programs 
 
We have developed several computer programs to support these calibration procedures.  
This section reviews the programs and foreshadows their use in the calibration process.  
Throughout the user interfaces, the results of image measurements are shown in red (or 
gray, if this report is printed in grayscale).  Blue/dark gray markings indicate 
kinematically derived predictions using the previous calibration, and are shown in the left 
image of the split display.  Green/light gray markings indicate kinematically derived 
predictions using the updated calibration, and are shown in the right image of the split 
display. 
 
The GenVisCalData (Generation of Visual Calibration Data) program, whose display is 
shown in Figure 3, is used to observe the robot under external control, and to log relevant 
kinematic and visual data.  In the background ima ge, Robonaut’s hand can be seen 
holding the calibration fixture.  The red/gray circle represents the continually updated 
visually located position of the ball in the image (this measurement is actually a 3D 
measurement based on depth-from-disparity over the image.)  The blue/dark gray circle 
in the left frame represents the projection of the calibration fixture into the image as 
predicted by the arm and neck kinematics (using the as-built kinematic parameters).  The 
green/light gray circle in the right frame represents the projection of the calibration 
fixture into the image as predicted by the arm and neck kinematics (using the updated 
kinematic parameters).  The program continually queries the robot for the current joint 
angles, allowing a live qualitative review of the quality of the current calibration.  
 
The SumVisCal (Summary of Visual Calibration) program, whose display is shown in 
Figure 4, is used to automatically cycle through each configuration of the robot in a data 
set and update all measurements in the set.   It will also summarize a calibration set, and 
is used to estimate the optimal joint angle offsets for a given data set (the “daily 
calibration”).    
 
For each robot configuration in the set, this display shows two red/gray dots, one in each 
frame, representing the visually-located positions of the calibration fixture, and a 
blue/dark gray dot in the left frame and a green/light gray dot in the right frame, 
representing the kinematically-derived position predictions of the calibration fixture.  A 
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white line connects each pair of dots.  If the updated calibration exactly predicted the 
visual measurements, the pairs of dots in the right hand frame would coincide in all cases. 

 

 
Figure 3: The GenVisCalData Display, ready to log data 

 
 

 
Figure 4: SumVisCal Display showing a typical calibration set summary 

 
 
The RoboVisCal (Robotic Visual Calibration) program is used to review a stored 
calibration set frame-by-frame.  It is also used either alone or as a slave to SumVisCal to 
actuate the robot to a particular recorded configuration and update the kinematic and 
visual measurements for this point in the data set.  Figure 5 presents RoboVisCal’s 
display showing a typical configuration that is a member of one of these sets.  The 
graphical conventions are the same as for GenVisCalData.   
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Figure 5: The RoboVisCal Display showing a typical target in a calibration set 

 
Daily Calibration Procedure 
 
A daily calibration procedure has been developed using these software modules.  First, a 
prerecorded set of configurations is loaded into the system.  The SumVisCal program is 
used to drive the robot to each configuration and to update the kinematic and visual 
measurements.  As this happens, the red/gray dots shown in Figure 4 will dynamically 
update, and the average distance error between the visual measurements and the 
kinematically derived predictions will be dynamically updated.  This process takes 
approximately 10 minutes for a 65-element calibration set, primarily time to move the 
robot.  A dataset could also be captured using GenVisCalData as described above, but 
this is more time-consuming. 
 
A Nelder-Mead optimization algorithm is then used to estimate a set of joint angle offsets 
? i i=0...9 for the arm and neck based on the current set of visual measurements.  This 
process takes approximately 5 seconds per iteration, and can be done repeatedly to 
improve the estimate.  As this is an iterative search with a random initial value, repeated 
optimizations on the same data may improve the results.  The daily calibration thus 
consists of updating a set of visual measurements, followed by estimating the joint angle 
offsets.  Currently, these estimates are manually input to Robonaut’s control system. 
 
Full Calibration Procedure 
 
A full calibration procedure has also been developed using these software modules, in 
conjunction with some Matlab code.  An updated set of kinematic and visual 
measurements is taken as described above.  This data set is saved to a text file and taken 
to matlab, where a Nelder-Mead optimization algorithm is used to find a set of DHPs that 
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explain best this set of measurements.  This process takes from 25-120 minutes, 
depending mostly on the computational hardware.  The results from this search are a full 
set of DHPs that can be used in Robonaut’s control software, as well as in the visual 
cortex, to accurately map between the manipulator workspace and the visual workspace. 
 
Calibration Fixture 
 
While hand-eye calibration could be performed using visual measurements of any point 
on the kinematic chain (or many points on the chain), we designed the calibration fixture 
shown in Figure 5 for several reasons.  A visual measurement point distant from the wrist 
axes gives good observability for motions in the wrist roll and yaw axes.  This particular 
fixture does not give good observability of wrist pitch.  A sphere is a relatively simple 
target, visually.  The center of a sphere is observable and well defined regardless of the 
relative pose between the cameras and fixture.  The fixture also has a hand-guard to 
ensure a relatively repeatable grasp.  This prototype fixture should be replaced with a 
more robust fixture that exhibits a very repeatable grasp and significant distance from the 
wrist axes in each of the wrist DOFs. 
 

APPROACH/THEORY 

 
This section describes the theoretical underpinnings of the above procedures and presents 
the algorithms used in the calibration.  First, the Sphere Hough Transform and its use in 
locating the calibration fixture in the eye coordinate system are described.  Then, the 
setup for the nonlinear optimization at the heart of the hand-eye calibration system is 
described.  
 
Finding a Sphere in a depth dataset 
 
Central to this task is the accurate localization of the calibration fixture in the visual 
coordinate system.  We utilize the existing depth-from-disparity stereo algorithms 
developed by Eric Huber at the Johnson Space Center, and perform a search for a sphere-
shaped object in the depth map (a 2D array of depths measured from the visual 
coordinate system origin).   
 
The BallFinder algorithm begins with a seed location.  This location is currently set to the 
kinematically derived prediction of the calibration fixture location, expressed in the 
visual coordinate system.   
 
Points outside a large spherical region centered at this location are rejected from 
consideration.  This pruning step rejects distant points, such as the floor, from further 
consideration as possible members of the sphere surface.  Next, a minimal surface area 
test is performed on all surviving points.  Based on the distance of the seed location from 
the camera, the expected number of points on the sphere’s surface is computed.  
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Locations under consideration that are not members of a contiguous set of some fraction 
of this size are rejected from consideration.  This pruning step eliminates small isolated 
regions.  All remaining points participate in a voting scheme based on the generalized 
Hough Transform described below. 
 
The Hough Transform is a classic computer vision algorithm in which lines are located in 
an image by allowing each point that is a member of a line to vote for some set of M lines 
that could have created this point.  Lines which truly exist in an image will accrue more 
votes, and the top vote getters are very good candidates for lines in an image.  See [15] 
for more detail on the standard Hough Transform.  This algorithm can be extended to 
describe many types of parameterized shapes, such as circles [8] or spheres.  In the 
Sphere-Hough Transform, each point Pss that survives the pruning algorithms described 
above votes for a set of M spheres (centered at Psc,i i=1..M, points randomly sampled 
from the surface of a sphere centered at Pss) of which this point could be a surface point.  
Each of these points Psc represents one vote, in the Hough Transform paradigm, for a 
sphere centered at point Psc.  In our case, the voting is in Cartesian space, since the radius 
of our calibration fixture is known.  The location with the most votes is deemed the most 
likely to contain the actual sphere center.  Figure 6 depicts a slice of the voting results 
from an example image (the depth slice that contains the winning vote) on the right, and 
on the left  the input image with the winning 3-D location projected into it using the 
current camera calibration. 
 

 
Figure 6:  A map of a slice of vote-space from the Sphere-Hough Transform 

 
Hand-Eye Calibration 
 
The constrained and full variants of the calibration procedure described above differ only 
in which parameters are optimized.  In this section, we will describe the setup for this 
optimization procedure.  As described above, SumVisCal or GenVisCalData generates a 
set of joint measurements and visual measurements of the calibration fixture.  For each 
configuration i in the calibration set, the kinematic model is used to predict the location 
of the calibration fixture in the chest coordinate system.  This is a function of the 
Denevit-Hartenberg Parameters (DHPs) as well as the joint angles of the arm:  
 Pc,i = A1(DH,qi)*A2(DH,qi)*…*A7(DH,qi)*Pe,  
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where Pe is the (fixed) position of the calibration fixture in the hand coordinate system, 
DH contains the DHPs for the arm and neck, and qi contains the joint angles for the arm 
and neck2.  The kinematic model for the neck is used to predict the transformation from 
the chest coordinate system to the eye coordinate system in the same way: 
 Tce,i = A1N(DH,qi)*A2N(DH,qi) 
These transformations are used to create a kinematic estimate of the position of the 
calibration fixture in the eye coordinate system: 
 Pe,i = (Tce,i)-1 * Pc,i 
We also have for each configuration i in the calibration set the visual measurement of the 
3-D position of the calibration fixture, also in the eye coordinate system, that we call Pv,i  
 
The optimization procedure attempts to minimize the difference between Pv,i (fixed) and  

Pe,i (function of DHPs) over all i in the calibration set by search in DHP space.  Our 
objective function (the function to minimize) for this search is the sum of the distances 
between point pairs in our calibration set.  A Nelder-Mean simplex method [17] is used to 
minimize this function by search in the DHP space.  For the constrained, or “daily” 
calibration, the joint angle offsets (? i =0..9) are optimized.  For the full calibration all 
nonzero (and non-?/2) DHPs are optimized.  Several pairs of offsets, designed to be 
symmetric, are constrained to be equal and only contribute one dimension to the DHP 
search space. 
 

EXPERIMENTAL RESULTS 
 

Four experiments were performed to validate this procedure.  In Experiment 1, the mean 
error between a set of visual observations and kinematically derived predictions is 
reduced using the updated DHPs.  In Experiment 2, the updated DHPs derived from the 
data in Experiment 1 are used in conjunction with a “daily calibration procedure” to 
reduce the mean error between a set of visual data and kinematically derived predictions 
over the as-designed DHPs.  In Experiment 3, the “daily calibration” procedure is 
performed on one-half of a dataset, and the errors in both this set and the half of the 
dataset not used for training are evaluated.  Finally, in Experiment 4, an improvement in 
Robonaut’s performance on an autonomous wrench-grasping experiment is observed. 
 
Experiment 1 – Effect of Full Calibration 
 
The as-designed DHPs for the arm and neck are presented in Table 1.  As noted in the 
table, there is some disagreement in the DRL about the as-designed values for these 
parameters.  A set of 67 robot configurations were chosen, and the reported joint angles 
and visual measurements logged.  The mean distance between the kinematically derived 
prediction for these measurements and the actual visual measurements was 13.75cm. 
 
 

                                                 
2 For convenience, we take qi  = [q1,arm q2,arm . . . q7,arm q1,neck q2,neck]

T , and similarly concatenate the DHPs.  
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Table 1: As-Designed D-H Parameters for Robonaut, Unit A. 
Angles are in degrees and lengths in cm. 

 Shoulder 
Roll 

Shoulder 
Pitch 

Elbow 
Roll 

Elbow 
Pitch 

Wrist 
Roll 

Wrist 
Pitch 

Wrist 
Yaw 

Neck 
Yaw 

Neck 
Pitch 

Neck 
Roll 

? j 0 0 0 0 ?  -??  0 0 ???1 0 

dj 30.482 0 36.83 0 36.83 0 -1.27 28.5753 0 2.92 

? j -??  ??  -90 ??  -90 ??  0 ??  ??  0 

aj -6.35 6.35 -5.08 5.08 0 0 3.81 -5.08 -11.96 0 

1 – a slight head-tilt is more comfortable for teleoperation  
2 – in some designs, this is 32.94 cm 
3 – in some designs, this is 27.31 cm 
 
The full calibration procedure described above was performed on this data set.  The 
DHPs shown in Table 2 were found.  For the same set of 67 configurations, the mean 
distance between the kinematically derived prediction (using the updated DHPs) for 
these measurements and the visual measurements was 1.85cm.  These data are 
summarized in Figure 4. 
 

Table 2: D-H Parameters for Robonaut, Unit A, after Visual-Kinematic Calibration 
Angles are in degrees and lengths in cm. 

 Shoulder 
Roll 

Shoulder 
Pitch 

Elbow 
Roll 

Elbow 
Pitch 

Wrist 
Roll 

Wrist 
Pitch 

Wrist 
Yaw 

Neck 
Yaw 

Neck 
Pitch 

Neck 
Roll 

? j -8.444 -1.535 -2.013 -3.780 ????? -95.58 4.227 -1.057 ???????  -90.0 

dj 31.856 0 35.498 0 35.498 0 -0.053 28.292 0 2.537 

? j -??  ??  -90 ??  -90 ??  0 ??  ??  0 

aj -5.056 5.056 -0.99 .99 0 0 11.358 -6.773 -12.667 0 

 
Experiment 2 – Effect of Daily Calibration 
 
The DHPs shown in Table 2 were used to predict the location of the calibration fixture in 
a set of 150 unique configurations, with an average error of 7.94cm.  This was several 
days (and several power cycles) after Experiment 1, so we expect that the reported joint 
angles differed from the actual joint angles by different amounts than estimated in 
Experiment 1.  The “Daily Calibration Procedure” described above was used to compute 
the updated joint angle offsets shown in Table 3.  The remainder of the DHPs were as 
shown in Table 2.  The average error was reduced to 2.02cm over this dataset. 
 

Table 3: D-H Parameters for Robonaut, Unit A, after “Daily Calibration” 
Angles are in degrees. 

 Shoulder 
Roll 

Shoulder 
Pitch 

Elbow 
Roll 

Elbow 
Pitch 

Wrist 
Roll 

Wrist 
Pitch 

Wrist 
Yaw 

Neck 
Yaw 

Neck 
Pitch 

Neck 
Roll 

? j -1.70 0.243 -0.149 2.323 ????? -90.634 9.340 0.601 ??????? -93.078 
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Experiment 3 – Effect of Daily Calibration on Non-Training Data  
 
In this experiment, half a data set was used to tune the DHPs, and the power of these 
parameters to predict the position of the calibration fixture in the other half of the data set 
was tested.  The DHPs shown in Table 2 were used to predict the location of the 
calibration fixture in a set of 75 unique configurations, the first half of the configurations 
from Experiment 2, with an average error of 7.87cm.  This was several days (and several 
power cycles) after Experiment 1, so we expect that the reported joint angles differed 
from the actual joint angles by different amounts than estimated in Experiment 1.  The 
“Daily Calibration Procedure” described above was used to compute the updated joint 
angle offsets shown in Table 4.  The remainder of the DHPs were as shown in Table 2.  
After this calibration, the average error was reduced to 2.04cm over this dataset.  This 
set of DHPs was then used with no further optimization to predict the position of the 
calibration fixture in 75 configurations that had not been used in training, the second half 
of the configurations from Experiment 2.  Over this dataset, the DHPs from Tables 2 and 
4 produced an average prediction error of 2.35cm. 
 
 

Table 4: D-H Parameters for Robonaut, Unit A, after “Daily Calibration” 
Angles are in degrees. 

 Shoulder 
Roll 

Shoulder 
Pitch 

Elbow 
Roll 

Elbow 
Pitch 

Wrist 
Roll 

Wrist 
Pitch 

Wrist 
Yaw 

Neck 
Yaw 

Neck 
Pitch 

Neck 
Roll 

? j 0.186 0.153 0.404 3.198 ????? -88.780 8.946 -0.121 ??????? -93.620 

 
Experiment 4 – Performance in Wrench-Grasping Experiment 
 
As an example of the types of tasks that the DRL is demanding of Robonaut, this section 
presents the contribution of this visual calibration to an experiment run by a team from 
Vanderbilt University on autonomous wrench-grasping.  In this experiment, a 
teleoperator is observed grasping wrenches in nine different workspace locations.  Figure 
7 shows the physical setup for this experiment.  Robonaut’s vision system is used to 
observe the wrench in a unique location, and a learning algorithm [16] is used to grasp 
the wrench in this location. 
 
In this experiment, described in more detail in [18], a 6DOF Cartesian-space vision-
workspace correction was implemented.  This correction was a linear interpolation 
between vision/workspace mismatches recorded at several locations using teleoperator 
data.  This workspace correction reduced vision/kinematic mismatches, but not enough to 
enable Robonaut to grasp the wrench.  The updated DHPs shown in Table 2 were 
experimentally placed into the inverse kinematics procedures for Robonaut, and the 
workspace correction was removed.  The system was immediately able to grasp wrenches 
at several different positions in the workspace. 
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Figure 7:  An overview of the Vanderbilt wrench-grasping experiment 

 
 

DISCUSSION AND CONCLUSIONS 
 

Closed-loop self-calibration of the combined kinematic/visual systems for Robonaut Unit 
A has been performed.  This calibration procedure does not explicitly register the visual 
or the kinematic system with ground-truth, but modifies the perceptions associated with 
the kinematic movements to match the perceptions of the vision system.  Procedures and 
algorithms have been developed that will enable the robot to be recalibrated when 
necessary.  These procedures have reduced vision-kinematic mismatch from 13-15cm to 
2-3cm in various situations, and have enabled the DRL team to continue increasing the 
autonomous capability of Robonaut. 
 
Future work 
 
There are several directions in which this work could be improved.  The most obvious is 
to do a careful extrinsic calibration of Robonaut’s vision system so that this closed-loop 
procedure will more accurately reflect distances and rotations in the workspace.  Also 
useful would be to systematically study the number of measurements required to calibrate 
the system, both in the reduced and full cases.  The system should also be extended to 
calibrate the left arm of Unit A and each arm of Unit B.  The method described in this 
report should extend to these situations in a very straightforward manner.  With some 
extension, this method could be extended to the simultaneous calibration of the vision 
system and both arms of Robonaut. 
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