
Spatially Nonuniform Scaling Functions for High Contrast Images
Proceedings of Graphics Interface 93, pp. 245-244, May 1993

K Chiu, M Herf, P Shirley, S Swamy, C Wang, K Zimmerman
Computer Science Department,

Lindley Hall, Indiana University, Bloomington, IN 47405
812 - 855 - 6486

e-mail address : [chiuk | mherf | shirley | shankar | wangc | kuzimmer]@cs.indiana.edu

An algorithm is presented that scales the pixel intensities of a com-
puter generated greyscale image so that they are all displayable on a
standard CRT. This scaling is spatially nonuniform over the image
in that different pixels with the same intensity in the original image
may have different intensities in the resulting image. The goal of
this scaling transformation is to produce an image on the CRT that
perceptually mimics the calculated image, while staying within the
physical limitations of the CRT.

CR Categories and SubjectDescriptors: I.3.0 [Computer Graph-
ics]: General; I.3.6 [Computer Graphics]: Methodology and Tech-
niques.

Additional Key Words and Phrases: brightness, contrast, dy-
namic range, filter, glare, luminance, radiance, vision.

1 Introduction

In recent years much attention has been paid to the chromatic lim-
itations of CRTs and printers, and their resulting shortcomings in
accurately reproducing highly saturated colors[5, 14, 17, 4]. This
is often referred to as a gamut mapping problem because the gamut
(set of distinct colors) in the image we wish to display is not a
subset of the CRT gamut. Spatial limitations of CRTs have also
been explored, usually in the language of signal processing (e.g.
[6, 11, 3]).

Perhaps the greatest limitation of the CRT, its small dynamic range,
has received relatively little attention. This limitation particularly
manifests itself when we wish to display images with contain both
high and low radiance values. In this paper we examine the diffi-
culties in displaying a particular test image of this type. To simplify
our task, we have chosen a greyscale image as our test image. We
view this as a feasibility study into whether such “difficult” images
can be adequately displayed on a CRT. We conclude that our test
image can be displayed adequately, and the display method we use
gives some insight into what type of general algorithms should be
developed for the display of arbitrary images.

The work presented in this paper is meant to be exploratory, and
is not meant to be an alternative to the approach of Tumblin and
Rushmeier[18]. This paper presents spatially varying image map-
pings without considering adaptation issues. Tumblin and Rush-
meier take an orthogonal approach and concentrate on adaptation

issues (making dark scenes look dark and bright scenes look bright).
Both Tumblin and Rushmeier and this paper ignore issues involving
color. Ultimately, the issues of overall dark adaptation, spatial dark
adaptation, and chromatic adaptation must be addressed in a single
context.

In Section 2 we describe our test image, a lamp with an exposedbulb
lighting a room, and why the properties of this image imply that a
spatially nonuniform transform is needed to display the image on
a CRT. In Section 3 we formally state the problem of transforming
a computer generated greyscale image to a displayable image, and
discuss our basic strategy for finding a “good” transformation. In
Sections 4 and 5, we discuss both spatially uniform and spatially
nonuniform techniques for scaling a greyscale image to an image
to be displayed. Our particular ad hoc image scaling algorithm,
along with a method for introducing glare effects into the image, is
presented in Section 6. Finally, we discuss our current thinking and
speculate on future solutions in Section 7.

2 Test Image

Our test image is of a room lit by a single incandescent bulb. This
image was generated using distribution ray tracing[2] for the direct
lighting, and a physically plausible ambient component to approx-
imate the indirect lighting. We compared the luminances in this
image to the luminances in a real room1, and found the range and
location of luminance values to be fairly consistent.

The test image is shown in Figure 1, where the radiance varies from
0.0167 (arbitrary units) in the table leg, to 500 at the light-bulb,
for a ratio of approximately 1:30000. This image is displayed by
mapping radiance 0 to black, and mapping 1.0, 10.0, and 500.0 to
white (top to bottom). Because of the wide range of radiances in the
image, none of mappings is satisfactory. The top image (white =
1.0) displays the floor in a way that is qualitatively similar to the way
the floor looks in the real scene(the woodgrain is clearly visible), but
pixels near the light bulb are washed out. The middle image (white
= 10) shows both the light and the floor, but the detail in the floor is

1Luminance in the real room was measured using a spot photometer. Us-
ing this device helped our qualitative understanding of the relation between
luminance and brightness. We recommend that anyone working in this area
attempt to acquire such a device, which are available in good photography
supply stores for under $500.

1

lost, and the pixels on the edge of the bulb all are mapped to white,
so the bulb edge appears jaggy. The bottom image (white = 500)
correctly antialiases the light bulb edges, but the rest of the image
pixels go to black or near black. None of these three mappings will
do.

The test image characteristics make us believe that the same mapping
cannot be used at each pixel. The first characteristic is that a pixel
that is completely filled by the light bulb will have radiance 500,
and pixels that is half filled by the light bulb will have radiance
250. The pixel with value 500 will be mapped to white (1.0). To
correctly antialias the bulb, and thus prevent jaggies, the pixel with
value 250 must be mapped to a medium grey (about 0.5). A pixel
partially filled by the bulb edge with value 5 should be mapped to
a dark grey (around 0.01). This mapping for the actual pixels near
the bulb is shown in Figure 2. On the other hand, the wood grain
in the floor, which is definitely visible in the real scene, varies in
radiance from approximately 0.02 to 0.08. For this difference to be
visible as light and dark features, the 0.08 radiance must be mapped
to some non-black radiance, which means a pixel value greater than
0.01. This means a pixel covering the floor with original value 0.08
should be mapped to a higher value than a pixel near the bulb edge
with original value 5.0. This basic observation implies that the way
a radiance is mapped to a pixel value on the CRT should depend on
spatial position in the image. This is the basic observation that lead
us to begin this work.

3 Mathematical Formulation

In this section we attempt to formally define what a display algo-
rithm does, and outline our basic strategy for finding a good display
algorithm. We do this by viewing the display process as mapping
a particular image to some approximate image. A good display
algorithm is one that finds an image that is approximate in some
perceptual sense.

A “real-world” greyscale image r is a member of the set of all such
real images R. If we parameterize the radiances that define r over
some image plane, we can represent any real image as a mapping
from [0;1]2 to a radiance. If we view radiance as a positive scalar,
we can write down the set of all real images as:

R = frjr : [0; 1]2 ! [0;1)g

For display purposes, an image in R is mapped to a discrete-
domained raster image2 defined on a nx by ny pixel grid of pixels
P = f0; � � � ; nx � 1g � f0; � � � ; ny � 1g. The set F of all such
images is defined as:

F = ff jf : P ! [0;1)g

Our test image is a member of F with (nx; ny) = (400;300).

2The raster image is normally computed from the real image through
a process known as filtering. In computer graphics, the raster image is
typically calculated directly because the filtering process is tightly coupled
to the sampling process. This is not surprising because of the vastly reduced
information content in a raster image relative to a real image.

Figure 1: (top) black = 0.0, white = 1.0+. (middle) black = 0.0,
white = 10.0+. (bottom) black = 0.0, white = 500.0.

1.2

1.3

1.3

1.3

1.3

1.3

1.3

1.4 1.6 1.7 1.8 2.01.3

11 83 154 83 1.8

1.8

2.0

2.0

2.0

2.0

2.0

2.01.3

11

500

490

470 500

500

470

225

184

337

235

195

235

1.5 1.712

12

73 439 419 83

246

490

Figure 2: Pixel luminance values near the bulb (above) and the
resulting image if 500 is defined to be white

The finite dynamic-range of the display hardware requires a further
normalization step. We define the set of all normalized raster images
as:

F̂ = ff̂ jf̂ : P ! [0;1]g
Finally, the digital nature of the display devices requires that an
image be a discrete-valued function. A discrete raster image is then
a member of the set:

D = fdjd : P ! fl0; l1; l2; � � � ; lngg

Though this last step is reasonably straightforward, to get a “correct-
looking” discrete raster image careful attention must still be paid to
gamma correction, and dithering (even with twenty-four-bit color
images) is recommended[5]. Of course, the final image on the screen
is a member of some subset of F̂ (having the same cardinality as
D), because at each pixel a continuous phosphor kernel will be
generated, and the overlapping kernels of all pixels form an image
continuous in space. The spatial limitations of CRTs is examined
in detail in Glassner’s book[3].

Of these steps, the transformation from raster image f 2 F , to
normalized raster image, f̂ 2 F̂ is the one we will concentrate
on. Therefore, we will assume that we are given a raster image f
and only need to find a normalized raster image f̂ . If we had a
perceptual distance metric, f̂ would simply be the image “closest”
to f . This error minimization strategy has been applied by Glassner
et al. for gamut-mapping[4] and for brightness mapping by Tumblin
and Rushmeier[18].

In determining f̂ , the characteristics of the human visual system
should be considered. We can extensively change image charac-
teristics that the visual system is particularly insensitive to, such as
overall luminance (e.g. an image that is scaled everywhere by a
factor of two looks the same as the unscaled image). However, we
must be very careful to preserve the qualities of the image that the
visual system is particularly sensitive to, such as local contrast.

Physical limitations of the eye create a number of artifacts in the
real-world image. Two examples might be bloom (glare) and dark
adaptation effects. Other examples can be seen in various optical
illusions. The causes range from scattering in the lens to chemical
equilibria. Artifacts induced in the visual system by the real image
may not be induced by the displayed image,however, so introduction
of these artifacts directly into the displayed image can increase
realism. Care must be used, though, becausemany of these artifacts
are normally compensatedfor by brain functions. Such artifacts can
then look “wrong” if present in the displayed image. For example,
simultaneous contrast effects will occur in a displayed image as
long as the contrast value is achievable on the CRT, and hence these
effects should not be exaggerated in the displayed image. On the
other hand, the glare we see in real scenes cannot be produced with
the relatively small maximum luminance displayable on a CRT, so
we must simulate the glare in the image itself, as is done by Nakamae
et al.[12].

Understanding what characteristics of the image must be preserved,
and what can be changed (and more importantly how much change
is allowed) is difficult, and unfortunately the vision literature does
not yet provide enough detailed, quantitative data to develop such
a metric from purely non-empirical means. Furthermore, this sit-
uation is not likely to improve in the near future. Tumblin and
Rushmeier summarize the issue nicely:

The eye’s response to light is still not completely un-
derstood. It is difficult to accurately quantify because
vision blends smoothly with higher brain functions,
and because the eye’s behavior is strongly dependent
on the content of the viewed image. Brightness re-
sponse is usually described by several processes, includ-
ing at least adaptation, simultaneous contrast, bright-
ness, color-constancy, memory, and cognitive processes.
Many of these are interdependent, self-adjusting, and
difficult to measure separately; each tends to obscure the
other, so that brightness rules inferred from simple tests
often fail when applied to more complex images.

4 Spatially Uniform Mappings

The simplest mapping from F to F̂ is to uniformly scale at each
pixel and to then clamp intensities above one:

f̂(i; j) =

�
f(i;j)
Iclamp

if f(i; j) < Iclamp

1:0 otherwise

For high dynamic range images, the image either looks too dark
if Iclamp is set high, or clamping artifacts occur if Iclamp is set low
(e.g. Figure 1). These artifacts can be reduced in severity if a more

continuous transform is used[5], but either the image will still appear
too dark, or the antialiasing near luminaires will be compromised,
as will be discussed in Section 5.

Tumblin and Rushmeier noted that the adaptation level of the ob-
server should be considered in designing the uniform mapping. Us-
ing the model for adaptation given by Stevens and Stevens[16, 15],
they arrived at a uniform transform to reproduce the tone of the im-
age being rendered. In other words, an image of a room lit by a one
watt bulb should be displayed on a CRT in a way that makes it look
dark, and an image of a room lit with a 1000 watt bulb should appear
bright. This hands-off method nonlinearly transforms and scales f
to its corresponding adaptation level on a display and works very
well with relatively low contrast scenes. To our knowledge, Tum-
blin and Rushmeier have produced the first algorithm that displays a
computer generated image based on a brightness perception model.
As they point out, the brightness model they base their algorithm on
is too simple to completely succeed in a spatially complex image.
However, their basic idea of using a computational brightness model
to calculate a perceptual distance between two images is likely to
be part of most future image display algorithms.

5 Spatially Nonuniform Mappings

The transformations discussed in the last section are of the form
f̂(i; j) = g(f; f(i; j)), where the function g is independent of the
position of the pixel, and is solely based on the properties of f . So a
particular pixel value will be set the same regardless of its position
in the image. As argued in Section 2, such transforms can never
adequately display our test image because either the light bulb will
be washed out, or the woodgrain on the floor will become too dark
to be seen.

Two considerations, however, lead us to believe that spatially
nonuniform mappings can yield better results. First, the visual
system is itself spatially non-uniform. Second, and more convinc-
ingly, artists and photographers have established the usefulness of
spatially non-uniform mappings through a history of experience and
observation. An artist working with her eyes and brain may pro-
duce a normalized raster image that is perceptually closer to the real
image than any image that a spatially uniform filtering process can
produce. Photographers also use spatially non-uniform techniques
when they selectively expose different areas of the photographic
paper.

In Figure 1, an artist would use a combination of all three pictures:
she would dim the pixels near the light bulb, and increase the inten-
sity of the pixels far from the bulb. Effectively, this is a spatially
nonuniform mapping, because the mapping depends not only on
pixel value, but on i and j as well.

In general we can describe spatially nonuniform mappings as
f̂(i; j) = g(i; j; f; f(i; j)). We have found it more convenient
to represent the transformation as a product of the original image
with a scaling function:

f̂(i; j) = S(i; j)f(i; j)

In this scheme, a spatially uniform transform would have S(i; j) =

S

S f

f

Figure 3: (top) Input image f , black = 0.0, white = 1.0+. (middle)
Scaling function S, black = 0.0, white = 1.0. (bottom) Image where
each pixel is the product of the corresponding pixel in S and f .

Figure 4: The inverse of f . Using this image as a scaling function
will yield a white final image.

g(i; j; f; f(i; j))=f(i; j). An example of a nonuniform transform
is shown in Figure 3, where the scaling function S is simply a ramp
from 0.0 to 1.0, left to right. This darkens the left side of f . This
scaling function is not actually valid, because Sf is not a member
of f̂ . There are still some pixels near the bulb with values greater
than one. From observations like this, we can immediately establish
some constraints on S. Because 0 � f̂(i; j) � 1,

0 � S(i; j) � 1
f(i; j)

This immediately points out two valid scaling functions (i.e func-
tions that map all pixels in f to a value between 0 and 1):
S0(i; j) = 0:0 and Smax(i; j) = 1:0=f(i; j). A valid scaling
function must have S0(i; j) � S(i; j) � Smax(i; j) for all (i; j).
Smax is just the inverse of f and is shown in Figure 4 where zero
maps to black, and 50.0 maps to white.

We should try to discover other simple properties S should have. In
the same way stochastic sampling relies on the eye’s insensitivity to
noise[2], we should design S with human visual properties in mind.
Land[8] and Marr[10] have argued that the eye is not sensitive to
luminance so much as reflectance. As a result of this, slow spatial
variation in luminance is to some extent ignored by the eye. Land
demonstrated this by illuminating a Mondrian print with different
incident intensity ramps across the image and demonstrating that
the images look very similar even though luminance values for
particular locations vary by as much as a factor of ten from image
to image. This implies that we can display a pictures with wider
range than the dynamic range of the display, and that, as long as S
has a low magnitude gradient, we shouldn’t see the scaled image as
“looking” very different than the unscaled image. We can use these
constraints to investigate scaling strategies.

6 An Ad Hoc Scaling Function

Tumblin and Rushmeier state that some vision researchers have
speculated that the adaptation level in a part of the image is related
to a low pass filter of the image[18]. It seems natural to make
S(i; j) proportional to the reciprocal of a filtered (blurred) f . This
will accent dark areas and dim bright areas, much the same way
darkroom workers preferentially expose dark regions of a print3.

Two questions must be answered to apply that technique here. First,
what filter should be used to blur f? Second, what should the con-
stant of proportionality be? We attacked this question empirically
and found that noticeable artifacts were introduced if the filter was
not extremely wide (the kernel covering the whole image). We
found that the largest variation that could be used in the kernel be-
fore the nonuniform scaling was objectionable was approximately
a factor of four. For the proportionality constant, we started with
k = 2 in the equation:

S(i; j) =
1

kfblur(i; j)

where fblur is the filtered f . Of course, k is rather arbitrary as
we’ve discussed. A k of 2 will bring colors near the average to
f̂(i; j) = 0:5. This doesn’t leave a lot of room for the brighter
pixels where the transformed image still has pixels out of range.
This led us to think we wanted k as large as we could make it
without losing detail in the dark regions. We found this to be at
approximately k = 8.

The low pass filter used to create the images in this paper is e�0:01r

before normalization, where r is the distance (in one pixel width
equals one) from the center of the kernel. In a more general algo-
rithm, some angular distance related to field-of-view would probably
be more appropriate. We tried several other filters, such as the cone
filter, the Gaussian filter, and the Perlin[13] filter. However, as long
as the filter was wide, we saw no obvious differences in the results.
To avoid darkening near the edge, we normalized the weights of
the kernel pixels within the image boundaries so that they summed
to one. In other words, pixels in the blurred image are a weighted
average of pixels in the original image.

Unfortunately, a full blown filtering operation with full screen filters
requires approximately 2N 2 operations, where N is the number of
pixels in the image. This is over one trillion (1012) operations for
a full-screen image and over ten billion operations for the 400 by
300 test image in this paper. Because the blurred image is quite
smooth, we calculated a selected set of pixels (every tenth row
and column) in the blurred image and then interpolated between
them. This makes a more manageable number if operations in the
blurring calculation. In order to avoid Mach bands, the interpolation
function must maintain a continuous derivative in the blurred image.

3In fact, the technique of using a blurred f as a filter has been used
before in photography and in image processing. In the so called unsharp
masking technique, [9], the image filtered with a Gaussian filter, or some
other blurring filter, is subtracted from the original image to get an image
enhanced in sharpness. This technique may cause negative pixels, so the
subtracted image is often scaled down, or the absolute value of the difference
is used. This technique is really meant to enhance features in the image rather
than to make the image perceptually correct.

Figure 5: The blurred image. Black = 0.0, white = 1.0.

For ease of calculation we used Perlin’s interpolation function[13],
which has this property in its derivative. In one dimension, Perlin’s
function interpolates between to values c0 and c1 as c = (�2t3 +
3t2)c0 +(2t3�3t2 +1)c1, where t varies from zero to one between
c0 and c1. The blurred image produced using this method is shown
in Figure 5.

6.1 Corrected Transformation

Unfortunately, this transformation based on blurring still leaves
some transformed pixels above 1 if the dynamic range is high. This
can be seen because S(i; j) > 1=f(i; j) for some pixels on or
near the light. A poor but valid transformation can be obtained by
clamping the intensities above 1=f(i; j):

Ŝ(i; j) =

�
S(i; j) if S(i; j) < 1

f(i;j)
1

f(i;j) otherwise

However the resulting image will have the same problems near the
luminaire as described in Section 2, i.e. the antialaising near the
bulb will not behave as shown in Figure 2. Another way that we can
see this clampedS is inadequate is to observe that S will have a very
steep gradient where the clamping occurs (the bulb edge). To avoid
the artifacts becauseof this steep gradient, we can smooth them. We
can be fairly sure that we want the luminaire to map to 1.0. So we
can attempt to smooth Ŝ with the constraint that the pixels where
S is out of range stay fixed. This smoothing can be accomplished
with repeated filtering on Ŝ using a small width kernel, with the
constraint that previously clamped pixels in S will not change. The
actual filter used is a three by three filter shown in Figure 7. The
weights in this filter sum to one, and their relative sizes are 1; 0:5;
and 0:25

p
2.

This process is illustrated in Figure 6 where in the top the original S
is shown, in the middle the clamped Ŝ is shown, and in the bottom
right the clamped and smoothed Ŝ is shown. The smoothing was
accomplishedby running the filter in Figure 7 over the middle image

Figure 6: (top) S = 1:0=(8�fblur). (middle) clampedS. (bottom)
smoothed and clamped S.

0.113

0.080

0.227

0.113

0.113

0.113

0.080

0.0800.080

Figure 7: Filter used to to smooth Ŝ.

ten thousand times. Figure 8 shows the application of the scaling
function to out test image. The bottom of this figure shows the
scaled image to be displayed. The dark ring around the bulb looks
strange. One reason for this is that the blooming effect (glare) we
see around real luminaires is not present.

6.2 Glare from High Intensity Objects

Better results can be achieved if glare is modeled. This reduces the
maximum contrast in the image and creates an illusion of brightness.
Nakamae et al.[12] modeled two types of glare. The first was blur-
ring or “blooming”, where a hazy fog is visible around the luminaire
(see Figure 9). The second was “streaking”, where star-like smears
emanate from the luminaires. This streaking is also implemented
in Ward’s Radiance program[19]. We have only implemented the
blooming effect.

In a real scene a glare or blooming effect can be observed near ob-
jects of high intensity. This is the result of light scattering within the
eye. This effect has to be placed in the displayed image because the
CRT cannot produce a luminance large enough to trigger noticeable
glare in the eye. The amount of scattering which occurs is different
for each viewer. Factors which determine the scatter include the age
of the viewer, the viewer’s distance from the viewed object and the
intensity of the object [7].4

Since the blooming effect is highly viewer dependent, the develop-
ment of our model for introducing glare into the image is empirical.
Intuitively a pixel in a filtered image f̂(i; j) should retain some
constant factor k of the original value of f(i; j) where k < 1:0.
The remaining 1� k should be based on a weighted average of sur-
rounding pixels with adjacent pixels contributing more. A simple
filter with a large peak is appropriate. A filter F̂ was created with

F̂(i; j) =

8<
:

k if i = j = 0
k0F(i; j) if

p
i2 + j2 � w=2

0 otherwise

where

4The increase in scattering that occurs with age is almost entirely due to
changes in the lens.

f

S^

S f^

Figure 8: (top) Input image f , black = 0.0, white = 1.0+. (middle)
Scaling function Ŝ , black = 0.0, white = 1.0. (bottom) Image where
each pixel is the product of the corresponding pixel in Ŝ and f .

Figure 9: (left) A bare light bulb. (right) A light bulb with blooming
effect.

w is the width of the filter and

k0 = (1 � k)=I

F(i; j) =
���pi2 + j2 � w

2

���n

I = �F(i; j) +

w=2X
j=w=2

w=2X
i=w=2

F(i; j) is the normal-

ization constant

n is a controllable exponent greater than one.

Note that the (i; j) in F(i; j) refers to the coordinates relative to
the center of the filter. The particular form for F was chosen based
on three considerations: that it is a simple function whose shape is
controllable by n, that the sum of the filter coefficients is one, and
that it has a zero first derivative at its boundary, which is needed to
avoid the introduction of Mach bands into the image (for example,
see [1]).

The result of passing this filter with w = 121, n = 8 and k = 0:8
is shown in Figure 10. This is the same basic approach used by
Nakamae et al. to generate their very impressive driving simula-
tion animations, although they only run their filter over luminaires.
While this saves time, it does not take into account the fact that scat-
tering in the eye takes place over the whole image. It is just more
perceivable near patches of high intensity. This can create errors
in images containing high intensity non-luminaires (e.g. specular
reflections of luminaires).

We do not model any kind of streaking from the luminaire, although
this was done by Nakamae et al. and in Ward’s Radiance program,
both with good results. We chose not to do this becausewe do not al-
ways see streaks when viewing lights, and we still do not understand
the mechanism behind these streaks when they do occur. Nakamae
et al. suggest that the streaks are caused by diffraction through the
lashes of the viewer. While this does cause some streaking effects,
some streaks can be seen even when the eye is wide open. One pos-
sibility is that the streaks are caused by imperfections or scratches
on the surface of the lens, but more information is needed to be
certain. We are fairly sure that blooming is caused by imperfections
in the lens, and that diffraction is not an important mechanism in
blooming. According to the IES Lighting Handbook[7]:

Figure 10: Image after glare and scaling transforms

Diffraction—regardless of whether rays are in focus or
not, there is always a certain amount of blur due to
the diffraction of light. This determines the ultimate
resolving power when the eye is in best focus, but the
blur is not large enough to be perceived.

This implies any blooming we do model should probably not have
any significant color divergence.

7 Conclusion

We have presented a method to map a particular high dynamic range
image to a normalized image that is easy to display on a CRT. Our
method is not meant to be optimal,but a demonstration that spatially-
varying scaling is essential for the display of high dynamic range
images, and that this type of transform will be of great utility to
computer graphics practitioners. Our method assumed a medium
intensity scene (not on the extremes of our ability to dark adapt)
with a properly adapted person.

Our solution is based purely on experimental results. Currently we
are working on finding a theoretical basis for these results. One way
to interpret the final scaling function we used is that we have filtered
the image using multiple scales of the form proposed by Witkins in
his scaled space filtering work[20]. We think that this is a good area
to investigate and we hope it will yield a more hands-off approach.

Future work should also account for dark adaptation, chromatic
adaptation, time varying adaptation for walk-throughs, and optical
illusions. Other empirical techniques to map f to f̂ should also be
investigated. It is our feeling that instead of filtering we might be
better off applying the normalization constraint along with contrast
preservation constraints to f and follow a relaxation procedure.
This is a similar strategy to the device-directed rendering technique
used by Glassner et al. to force images into a device color gamut.
The brightness and color work could certainly be combined into a
system that fits an image to a three dimensional gamut.

Perhaps the most interesting implication of this work is that the error
metrics employed by rendering algorithms should pay less attention
to low frequency errors (indirect lighting), because the eye is not
sensitive to those frequencies. This may help explain why it is often
not visually obvious that a radiosity algorithm is simulating color
bleeding effects, but a good geometric model never goes unnoticed.

8 Acknowledgements

Thanks to Greg Ward for several helpful discussionsand his willing-
ness to share code and pictures, to Gary Meyer for initial suggestions
about this work, to Andy Hanson for suggesting the use of the scal-
ing function as a formalism, to Tim McBride for initial work on
this project, to Greg Spencer for discussions of glare and extended
precision file formats, to Andrew Glassner for making his Device
Direct Rendering paper available before it was finished, to the au-
dience at a rather muddled talk at the Cornell Program of Computer
Graphics who provided several valuable suggestions, and to Holly
Rushmeier and Jack Tumblin for their great assistance in getting us
to understand the brightness mapping problem and their algorithm.
This work was partially funded by NSF grant True Virtual Reality
Systems, NSF-CCR-92-09457.

References

[1] Edward C. Carterette and Morton P. Friedman, editors. Seeing,
volume 5 of Handbook of Perception. Academic Press, 1975.

[2] Robert L. Cook. Stochastic sampling in computer graphics.
ACM Transactions on Graphics, 5(1):51 – 72, Januaary 1986.

[3] Andrew Glassner. Principles of Digital Image Synthesis (in
preparation). Morgan-Kaufmann, New York, N.Y., 1993.

[4] Andrew S. Glassner, Kenneith PP. Fishkin, David H. Ma-
rimont, and Maureen C Stone. Devicd-directed rendering.
Xerox Technical Report (to appear), February 1993.

[5] Roy Hall. Illumination and Color in Computer Generated
Imagery. Springer-Verlag, New York, N.Y., 1988.

[6] J. Kajiya and M. Ullner. Filtering high quality text for dis-
play on raster scan devices. ACM Siggraph ’81 Conference
Proceedings, 15(3):7 – 15, August 1981.

[7] John E. Kaufman, editor. The Illumination Engineering Soci-
ety Lighting Handbook. Waverly Press, Baltimore, MD, 1984.

[8] Edwin H. Land. The retinex theory of color vision. (The)
Scientific American, 12:108–128, December 1977.

[9] Leo Levi. Survey : Unsharp masking and related image en-
hancement techniques. Computer Graphics and Image Pro-
cessing, 3:163 – 167, 1974.

[10] David Marr. Vision. Wiley, New York, NY, 1982.

[11] Don P. Mitchell and Arun N. Netravali. Reconstruction fil-
ters in computer graphics. ACM Siggraph ’88 Conference
Proceedings, 22(4):221 – 228, August 1988.

[12] Eihachiro Nakamae, Kazufumi Kaneda, Takashi Okamoto,
and TomoyukiNishita. A lighting model aiming at drive simu-
lators. ACM Siggraph ’90 ConferenceProceedings, 24(3):395
– 404, June 1990.

[13] Ken Perlin and Eric M. Hoffert. Hypertexture. Computer
Graphics, 23(3):253–262, July 1989. ACM Siggraph ’89 Con-
ference Proceedings.

[14] Brian E. Smits and Gary W. Meyer. Newton’s colors: Sim-
ulating interference phenomena in realistic image synthesis.
Proceedings of the Eurographics Workshop on Photosimula-
tion, Realism and Physics in Computer Graphics, pages 185
– 194, 1990.

[15] J. C. Stevens and S. S. Stevens. Brightness function: Effects
of adaptation. Journal of the Optical Society of America,
53(3):375–385, March 1963.

[16] S.S. Stevens and J. C. Stevens. Brightness function: Paramet-
ric effects of adaptation and contrast. Journal of the Optical
Society of America, 53(11):1139, November 1960.

[17] Maureen C. Stone and William E. Wallace. Gamut mapping
computer generated imagery. Graphics Interface ’91, pages
32 – 39, June 1991.

[18] Jack Tumblin and Holly Rushmeier. Tone reproduction for
realistic computer generated images. Technical Report GIT-
GVU-91-13, Graphics, Visualization, and Usuability Center,
Georgia Institute of Technology, 1991.

[19] Gregory J. Ward. Visualization. Lighting Design and Appli-
cations, pages 4–20, August 1990.

[20] Andrew P. Witkin. Scale-space filtering. In Alan Bundy, edi-
tor, Proceedings of the Eighth International Joint Conference
on Artificial Intelligence, pages 1019–1021. IJCAI, William
Kaufmann, Inc., August 1983.

